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Planetary model of atom

I A key experiment was made by Geiger and Marsden at 1909.
They bombarded a gold foil by α-particles and found a
dispersion of the α-particles.

I Rutherford established (1911) a formula for effective
dispersion of that particles and concluded that mostly mass of
atom is condensed in small volume of the atom.



Billiards

Ya.G.Sinai studied
a billiards as a model of kinetic
theory of gases. He published
work about the billiards and
their connection to statistical
physics at 1963 in Reports
of Soviet Academy of Sciences.
At 2014 he award the Abel

prize for the works about billiards and statistical physics.



Dispersion of n particles

Let us consider a particle m which will decay on two particles with
different masses m1 and m2.
The decay can be initialized by pumping of energy ε, like egg in
the microwaves oven.
Let us consider the particle in a coordinate system with origin on
this particle.

I A linear momentum for the decay can written as:

m1~v1 + m2~v2 + · · ·+ mn~vn = 0.

I A kinetic energy after the decay:

E = m1
v21
2

+ m2
v22
2

+ · · ·+ mn
v2n
2
.



Parameters of decay

These conservation laws allows us to find v1,2 for given m1,2:

~v2 = −~v1
m1

m2
.

So a direction for the velocities are opposite to each other. Then
we can choose an axis of coordinate which coincides with the
direction of ~v1.

ε = m1
v21
2

+ m2
v21m

2
1

2m2
2

, ε =
m1

m2
(m1 + m2)

v21
2
.

Then:

v1 =

√
2m2ε

m1(m1 + m2)
, v2 = −

√
2m1ε

m2(m1 + m2)
.



Linear momentum of a system
A linear momentum of n particles:

~P =
∑

mi ~vi ,

Define M =
∑

mi .
A movement of a center of mass:

~vc =
~P

M
.

A linear momentum of system of particles:∑
mi~vi −M~vc = 0.

Then the linear momentum with respect to the center of mass:∑
i

mi (~vi − ~vc) = 0.

Let us define ~νi = ~vi − vc , then:∑
mi~νi = 0.



Kinetic energy

Kinetic energy:

E =
∑ mi

2
v2i .

Let us define ~νi = ~vi − vc

E =
∑ mi

2
(νi + vc)2 =

∑ mi

2
ν2i +

M

2
v2c +

∑
mi (~νi , ~vc).

where: ∑
mi (~νi , ~vc) =

(∑
mi~νi , ~vc

)
= (0, ~vc) = 0.

Therefore:

E = E +
M

2
v2c , E =

∑ mi

2
ν2i



Collision of two particles

Let us consider a collision of two particles with given m1, m2 and
~v1, ~v2.
This means the energy E and ~P are given also.
A velocity of center of mass:

~vc =
m1~v1 + m2~v2
m1 + m2

.

Velocities of the particles with respect to the center of mass before
collision are defined as follows:

~ν1 = ~v1 − ~vc , ~ν2 = ~v2 − ~vc

These vectors are collinear (why?), since:

m1~ν1 + m2~ν2 = m1(~v1 − ~vc) + m2(~v2 − ~vc) =

m1~v1 + m2~v2 − (m1 + m2)~vc = 0.



Collision of two particles

Let us define by ~n an identity vector in a direction of ~ν2:

~n =
~ν2

(~ν2, ~ν2)
≡

~v2 − ~vc
(~v2 − ~vc , ~v2 − ~vc)

.

Let us define ~ν ′i a velocity of i-th particle after collision:

m1~ν
′
1 + m2~ν

′
2 = 0, ~ν ′k = ν ′k~n, k = 1, 2.

E =
m1

2
ν ′1

2 +
m2

2
ν ′2

2 + ε.

Here ε is measure of elasticity for the collision. Denote the full
kinetic energy after collision by E ′:

M

2
v2c ≤ E ′ ≤ E , 0 ≤ ε ≤ E − M

2
v2c .



Collision of two particles
It yields:

ν ′2 = −m1

m2
ν ′1,

E − ε =
m1

2
ν ′1

2 +
m2

1

2m2
ν ′1

2.

Therefore:

E − ε =
m1

2
ν ′1

2 +
m2

1

2m2
ν ′1

2.

ν1 =

√
2(E − ε)m2

m1(m1 + m2)
, ν2 = −

√
2(E − ε)m1

m2(m1 + m2)
.

Then

~v ′1 =
m1~v1 + m2~v2
m1 + m2

+

√
2(E − ε)m2

m1(m1 + m2)
~n,

~v ′2 =
m1~v1 + m2~v2
m1 + m2

−

√
2(E − ε)m1

m2(m1 + m2)
~n.



Billiard on half of straight line

Let us consider two
points m1 and m2 on a half of line.
Position of first point
x1 and position of second one x2.
Suppose that 0 ≤ x1 ≤ x2.
The system can be defined by pair of

coordinates these points (x1, x2)
A phase space for this system is inner points of angle π/4 on a
plane. Why?
Define velocities before collision like v1, v2 and after the collision
u1, u2.



Changing of variables
Conservation
laws for the dynamical system:

m1v1 + m2v2 = m1u1 + m2u2,

m1

2
v21 +

m2

2
v22 =

m1

2
u21 +

m2

2
u22 .

Let us change variables:

ξi =
√
mixi , i = 1, 2.

This means the phase space is an angle with the lowest border

ξ1√
m1

=
ξ2√
m2

.

The measure of this angle is:

α = arctan

(√
m1

m2

)
.



The conservation laws in new variables

Let’s consider the
conservation laws
for the system in
the new variables.
The conservation
law for the
energy looks like

ν21 + ν22 = µ21 + µ22.

This means the full speed for the whole system does not change,
but, of course, the velocities for both particles change after each
collision.



The conservation laws in new variables

The conservation
law for the
linear momentum
looks like:

√
m1ν1 +

√
m2ν2 =

√
m1µ1 +

√
m2µ2.

This formula
shows, that the collision does not change the tangent velocity.
(Why?)



The number of collisions

Let’s estimate the number of collisions.
Reverse the trajectory after collision. As a result we obtain the
number of collisions is:

N ≤
[π
α

]
=

 π

arctan
(√

m1
m2

)
 .



The small angle and π

For small angle α we get:

1

arctan(α)
=

1

x
+

x

3
− 4x3

45
+ . . . .

Therefore:
N ≤

[π
α

+
α

3
+ O(α3)

]
,

Consider m2 � m1 and let initially ν1 = 0 and ν2 < 0.
In this case

N
[π
α

]
− 1 =

[π
α

+
α

3
+ O(α3)

]
− 1.

If
√

m1/m2 = 10k then

N = [10kπ]− 1.



Dispersion in a central filed
Energy in the central field U(r):

E =
m

2
(ṙ2 + r2φ̇2) + U(r).

An angular momentum:

M = mr2φ̇.

The equation for the distance r looks like:

ṙ =

√
2

m
(E − U(r))− M2

m2r2
.

The equation for the angle:

dφ =
M

mr2
dt,

then:

dφ =
M

mr2
dr√

2
m (E − U(r))− M2

m2r2

.



An angle of dispersion

∆φ =

∫ ∞

rm

M

r2
dr√

2m(E − U(r))− M2

r2

.

Here rm is a root of a following equation:

2m(E − U(rm))− M2

r2m
= 0.

On the infinity a linear speed v0 and a distance between the center
line ρ, then the energy and angular momentum are:

E =
m

2
v20 , M = mρv0.

For the Cologne potential field:

U(r) =
c

r
, c = const .



A calculation of ∆φ

In this case:∫ ∞

rm

M

r2
dr√

2m(E − c/r)− M2

r2

= −
∫ ∞

rm

Md 1
r√

2mE − 2m c
r −

M2

r2

Let us define z = 1/r , then we obtain:

∆φ = 2

∫ zm

0

dz√
2mE
M2 − 2mc

M2 z − z2

∆φ = 2

∫ zm

0

dz√
2mE
M2 + m2c2

M4 − (2mc
M2 + z)2



Integrating using ”Maxima”

assume(B>0);

assume(A>0);

f:integrate(1/sqrt(A-B*z-z^2),z,0,(B-sqrt(B^2+4*A))/(-2));

f:f,A:2*m*E/M^2,B:2*m*c/M^2;

assume(m>0); assume(v>0); assume(rho>0);

phi:f,M:m*rho*v,E:m*v^2/2,radcan,ratexpand;

tan(phi)^2,radcan;

As a result we obtain:

tan2(∆φ) =
m2v40ρ

2

c2
,

This formula defines dependency on the angle andρ. The
experiment by Geiger and Marsden at 1909 shows that angles are
large for almost all ρ. This means nuclei of the gold foil are rare.
This observation allows to understand a structure of nuclei.
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