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A pendulum clock. History of invention

Linear oscillator with external force

Parametric resonance in linear oscillator



A pendulum clock

I Clocks as different mechanical and electrical equipment are
known at 750 year.

I The first clock was invented in China.

I Watches in towers were known in Europe since 13 century.

I A pendulum as a regulator in the watch was used

I A special spring which worked as a balance was used after
Huygens and Hook.

I Now, different periodical physical processes are used as basic
oscillators in watches.



Linear oscillator with external force

An equation of linear oscillator looks like:

mü + µu̇ + ω2u = f (t).

Here m is mass of the oscillator,
µ is a coefficient of viscous friction, k is
a parameter which defines the frequency of
the oscillator and f (t) is an external force.

To get the equation in the simplest form let
us divide both part of the equation on ω2:

du2
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+ u =
1

ω2
f (t).
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An equation for the linear oscillator

More often we will write the linear oscillator in the form

u′′ + νu′ + u = h(τ).

Here there is a new independent variable τ = ωt/
√
m and new

formulas for the parameters: ν = µ/(ω
√
m), h(τ) = f (Ωτ)/ω2 and

Ω =
√
m/ω.

Any external periodic force can be written in the form of Fourier
series:

h(τ) = a0 +
∞∑
k=0

ak cos(kλτ) + bk sin(kλτ)

Where T = 2π/λ is the period of oscillations of the external force
and ak , bk – Fourier coefficients.
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Periodic external force

Therefore the equation for the linear oscillator can be split on
series of the equations:

u′′k + νu′k + uk = ak cos(kλτ),

and
v ′′k + νv ′k + vk = bk sin(kλτ).

The general solution can be represented as series:

u =
∞∑
k=0

(uk(τ) + vk(τ)).

Below we assume that all series converge!
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Oscillator with single mode without friction.

Let us consider the equation with right-hand side in single form:

u′′k + uk = ak cos(kλt).

It is easy to see that the certain solution is:

uk =
ak

1− k2λ2
cos(kλt), k2λ2 6= 1.

The similar formula can be written for the following equation:

v ′′k + vk = bk sin(kλt).

It is easy to see that the certain solution is:

vk =
bk

1− k2λ2
sin(kλt), k2λ2 6= 1.
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An energy for non-resonant case

For simplicity, let us consider the energy of only one mode of
oscillation:

uk =
ak

1− k2λ2
cos(kλt).

The energy:

Ek =
u′2k
2

+
u2k
2

=
a2k

2(1− k2λ2)2
(k2λ2 sin2(kλτ) + cos2(kλt)).

This formula shows that the energy oscillates.
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A properties of series for the solution

u =
∑

k = 0∞
ak

1− k2λ2
cos(kλt) +

bk
1− k2λ2

sin(kλt)

For the values 1− k2λ close to 0 the term of the solution will have
larger value with respect to regular terms.



Resonant case

5 10 15 20

−10

−5

5

10

t

u

Figure: A resonant curve.

If k2λ2 = 1,
then the equation for this
k2 = 1/λ2 looks as follows:

u′′ + uk = ak cos(τ).

It easy to check that certain
solution of this equation is:

uk =
τ

2
ak sin(τ).

Similar formulas are appropriate for the following equation:

v ′′ + vk = bk sin(τ)

and:
vk = −τ

2
bk cos(τ).



An energy for the resonant case

Energy for the resonant case is following:

E =
u′2k
2

+
u2k
2

=
a2k
2

(τ2 + sin2(τ)).

Therefore the energy in the resonant case grows as τ2.



A forced oscillator with viscous friction
Let us consider an equation with viscous friction:

u′′k + νu′k + uk = ak cos(ωkτ),

A certain solution for this equation can be constructed in the
following form:

uk = A cos(ωkτ) + B sin(ωkτ).

Substitute this formula into the equation and equate terms with
cos(ωkτ) and sin(ωτ). As a result we get:

−Aω2
k + Bνωk + A = ak , −Bω2

k − Aνωk + B = 0.

A solution of this system of equations is:

A =
ak(1− ω2

k)

(1− ωk)2 + ν2
, B =

akνωk

(1− ωk)2 + ν2
.



A forced oscillator with viscous friction
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Figure: An
amplitude-frequency
response.

The
certain solution for the oscillator is

uk =
ak(1− ω2

k)

(1− ωk)2 + ν2
cos(ωkτ) +

akνωk

(1− ωk)2 + ν2
sin(ωkτ).

This
formula can be rewritten in the form:

uk =
ak√

(1− ωk)2 + ν2
cos(ωkτ+φk),

φk = arctan

(
ωkν

1− ω2
k

)
.

Maximum value of energy as ωk = 1:

E =
ak
ν



The pendulum equation
Equation of
a pendulum is derived as a sum of torques:

ml2u′′ + mlg sin(u) = 0

where m and l are
the mass and the length of the pendulum
and g is gravitational acceleration.
It is more convenient to rewrite this

equation as follows:

u′′ + ω2 sin(u) = 0, ω2 =
g

l

The parameter ω2 can be changed by changing the length of the
pendulum l . Notice that

ω2
1 =

g

l1
, ω2

2 =
g

l2
.

Therefore:
if ω1 < ω2, then l1 > l2.



A work of external force
The work of an external force over a period of an oscillation is:

A =

∫
L
f (t)du.

Therefore the work of the external force is proportional to the
length of the cycle.
The work of the viscous friction:

Av =

∫
L
u′du.

It means, that the force of the viscous friction is proportional to an
area inside the cycle.
For the smooth curve the work of the viscous friction grows as a
square of the length of the cycle.
Therefore the resonant growth will stop when the work of the
external force will be equal to the work of the viscous friction.
But a work of a dry friction is proportional to a length of the cycle
and therefore a dry friction cannot stabilize the external force in
general case.



A parametric resonance in linear pendulum
Let us consider
a linear part of the pendulum
equation with changed
length of the pendulum:

u′′+ω2(t)u = 0, ω(t+2T ) = ω(t),

where

ω(t) =

{
ω1, (t < T );

ω2, (T < t < 2T ).

The parameters ω1 and ω2 are constants.
General solutions of the equation as 0 < t < T has the following
form:

u1 = a cos(ω1t + φ),

The energy for this solution is given by the formula:

E =

(
(u′1)2

2
+ ω2

1

u21
2

)
ml21 = ml21ω

2
1

a2

2
= mgl1

a2

2
.



Parametric resonance in linear oscillator
On the next interval of time T < t < 2T the appropriate form of
the general solution looks like:

u2 = b1 cos(ω2(t − T )) + b2 sin(ω2(t − T )).

An equivalent form of of this solution is:

u2 = b cos(ω2(t − T ) + φ2), b =
√

b21 + b22, tan(φ2) = −b2
b1
.

Initial conditions for this solution look like:

u2|t=T = b1, u′2|t=T = ω2b2.

To prolong the solution on this interval one should match this form
of the solution with previous one:

b1 = a cos(ω1T + φ), b2 = −ω1

ω2
a sin(ω1T + φ).

The formula for the full mechanical energy in this case looks like:

E =

(
u′22
2

+ ω2
2

u22
2

)
ml22 = mgl2

b21 + b22
2

.



Changing of the energy

E2 = mgl2
a2

2

(
cos2(α) +

l2
l1

sin2(α)

)
, α = ω1T + φ.

The previous value of the energy:

E1 = mgl1
a2

2
.

Therefore:

E2 =
l2
l1

(
cos2(α) +

l2
l1

sin2(α)

)
E1.

If l2 > l1, then E2 > E1.
In the parametric resonance the energy grows exponentially.
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