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The law of conservation energy

Figure: James Prescott Joule and Julius
Robert von Mayer

The
most famous antique
books about physics
are called Metaphysics
by Aristotle.
Aristotle used the
two different quantities
which define the
Energy. Namely there
was potential energy
and actual energy.

A discussion about the conservation law of energy was passed at
middle of 19-th century between von Mayer and Joule. They argue
priority on the invention of equivalent between a heat and
mechanical energy. This discussion involves a lot of famous
physician of that time like Thomson and Helmholtz.



Potential Energy
Let us consider formula for potential energy U(x).
A derivative of the potential energy on x defines the conservative
force:

F (x) =
∂U(x)

∂x
.

I The simplest example is a potential energy depends linearly on
an independent variable like a following form:

U(x) = mgx , F ≡ mg .

I A quadratic form of dependency on x :

U(x) = k
x2

2
, F (x) ≡ x .

I Central field like a gravitational field and Coloumb field:

U(x) = −Gm

x
, F (x) ≡ −Gm

x2
.



Potential energy and equilibrium

The equilibrium means

F (x) ≡ 0, or
∂U(x)

∂x
≡ 0.

If the potential energy is smooth function, then near the
equilibrium

∂U(x)

∂x
≡ F (x0) = 0.

Potential energy can be represented by a segment of Taylor series:

U(x) = U(x0) +
1

2
U ′′(x0)(x − x0)2 +

1

3!
U ′′′(x0 + θ(x , x0))(x − x0)3,

here θ ∈ (x0, x).



Different types of equilibrium
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I If U ′′(x0) > 0 then point x = x0 is a minima of the potential
energy.

I If U ′′(x0) = 0 then point x = x0 is an inflection point.

I If U ′′(x0) < 0 then point x = x0 is a maxima of the potential
energy.



Saddle point
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This type
of the equilibrium is called a saddle.
Typical dynamical equation for this
case of the potential energy looks as:

mẍ − λ2x = 0.

Here
the coefficient λ2 is written as some
square to show the negative value
for the term −λ2x in the equation.
A general solution for this equation is

given by the formula:

x = C1e
λt/
√
m + C2e

−λt/
√
m, C1,C2 ∈ R.

The full mechanical energy is:

E = m
ẋ2

2
− λ2 x

2

2
.



Saddle trajectories
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If E = 0 then
we have five different trajectories.

I (0, 0) is the saddle point.
I ẋ = (λ/

√
m)x , as x > 0.

I A parametric formula for
this line looks like x = eλt/

√
m

and ẋ = (λt/
√
m)eλt/

√
m.

I ẋ = (λ/
√
m)x , as x < 0.

I A parametric formula for this line looks like x = −eλt/
√
m and

ẋ = −(λt/
√
m)eλt/

√
m.

I ẋ = −(λ/
√
m)x , as x > 0.

I A parametric formula for this line looks like x = e−λt/
√
m and

ẋ = −(λt/
√
m)e−λt/

√
m.

I ẋ = −(λ/
√
m)x , as x < 0.

I A parametric formula for this line looks like x = −e−λt/
√
m

and ẋ = (λt/
√
m)e−λt/

√
m.



Trajectories near the saddle:E = −2C1C2λ
2.
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For regular
trajectories: If E > 0 then we have
two different trajectories for given E .

ẋ = ± 1√
m

√
2E + λ2x2.

A parametric form for that curves is
looking as follows:

x = C1e
λt/
√
m + C2e

−λt/
√
m,

ẋ = C1(λ/
√
m)eλt/

√
m − C2(λ/

√
m)e−λt/

√
m.

If E < 0 then we have two different trajectories for given E .

x = ± 1

λ

√
−E + mẋ2,

A parametric form for that curves is looking as follows:

x = C1e
λt/
√
m + C2e

−λt/
√
m,

ẋ = C1(λ/
√
m)eλt/

√
m − C2(λ/

√
m)e−λt/

√
m,



Special case U ′′(x0) = 0
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Typical equation
for this special case looks like

m
ẋ2

2
+ kx3 = E .

If E = 0
we have three different trajectories.

I (0, 0) is a saddle-center point.

I ẋ =
√

k
m

√
−2x3, x < 0.

I ẋ = −
√

k
m

√
−2x3, x < 0.

If E 6= 0 then there exist one trajectory for given value E , this
trajectory tends from ẋ → −∞ as t → −∞ and ẋ → −∞ as
t →∞.

ẋ =

√
k

m

√
2E − 2x3, E > x3.



Mechanical energy and friction

A friction is one of cause of decreasing energy in mechanical
systems.
Let us consider a movement form one point x0 at the moment
t = t0 to the point x at the moment t.
The difference between a full mechanical energy can be written in
the form:

∆E = E (t)− E (t0).

A work of the friction can be written as an integral over the path:

A =

∫ x(t)

x0

Fdξ.

A consequence of a theorem of changing mechanical energy is the
following formula:

E (t)− E (t0) = A.



A dry friction in the oscillations

~F = kx

~N

m~g
~Fµ = µ ~N

Let us consider
the movement with dry
friction in a following
mechanical system
as shown in the figure.
A full mechanical energy

of the system has a following form:

E =
mẋ2

2
+ k

x2

2
.



A dry friction in the oscillations

A changing of this energy depends on the direction of the
movement:

Ė = mẋẍ + kẋu = (mẍ + kx)ẋ .

We know a differential law for the movement:

mẍ + µmg sign(ẋ) + kx = 0

Using this equation we obtain:

Ė = −µmg sign(ẋ)ẋ .

The right-hand side of this formula is non-positive. Then the value
of the energy decreases.



A viscous friction in the oscillator

The same oscillator for viscous friction

F = −µmgẋ .

In this case the equation for the oscillator looks like

mẍ + kx = −µmgẋ .

Therefore the energy for the oscillator with viscous friction:

Ė = (mẍ + kx)ẋ = −µmgẋ2.

So the energy for the oscillator with viscous friction decreases.



Trajectories with decreasing energy
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Curves depend on the energy looks like the ellipses. Therefore the
trajectories with decreasing energy crosses through such ellipses.
The angle between the tangent to the ellipse and the trajectories:

tan(α) = −µmgẋ2.



The Lyapunov function and stability of the equilibrium

Definition
The trivial solution x ≡ 0 is stable if ∀ε > 0 and ∀t0 ∃δ(ε, t0) > 0
and ∃x0 |x0| < δ ≤ ε then

|x(t)| < ε, ∀t > t0.

Theorem (Second Lyapunov’s theorem)

If ∃L(x) as |x | < ε and

I L(x) = 0 if and only if x = 0;

I L(x) > 0 if and only if x 6= 0;

I L̇(x) ≤ 0 for all x < ε and t > t0,

Then the solution is stable.

It easy to see that the formula for the full energy is the Lyapunov
function for the linear oscillator with friction.



Non-linear oscillator with friction

Let us consider a non-linear oscillator with viscous friction:

ẍ + µẋ + f (x) = 0, f (0) ≡ 0, f ′(0) ≡ k2 > 0.

A full energy for this oscillator is:

ẋ2

2
+ F (x) = E , F ′(x) ≡ f (x).

The condition f ′(0) > 0 means that the potential energy has
minima in the point x = 0 and:

Ė ≡ ẋ(ẍ + f (x)) = −µẋ2.



Non-linear oscillator with friction

In small neighbourhood of x = 0 we can use a segment of a Taylor
series for the F (x):

F (x) = k2x2 + O(x3), |x | < ε.

Let us consider ~x = (x , ẋ) and there exist ε > 0 such that for
|~x | < ε

I E (~x) = 0 if and only if ~x ≡ 0;

I E (~x) > 0 if and only if ~x 6≡ 0;

Therefore E is a Lyapunov function for the non-linear oscillator.
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