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History of invention
Second Newton’s law and phase plane



From vis viva to kinetic energy

An understanding of mechanical properties which allows a free
movement of a material body was coming from antique. There
were clear that property is defined by following characteristics:

I an inertial mass;

I speed of the motion.

But the formal attitude of this property was obtained only by
Daniel Bernoulli in his work at 1741 year.
Moreover till works by Coriolis and Poncelet (1839 year) (during a
century!) there was missunderstanding between:

I linear momentum as m~v ,

I vis viva as mv2

I and kinetic energy as mv2/2.



The mechanical work and formula for the kinetic energy

In the 19-th century the formula for the work of steam machine
looks like:

A(x) =

∫ x

0
F (ξ)dξ,

where F – force which can be depended on a position of the piston
and x is a piston stroke (changing of piston position under the
pressure of the steam).
So now one can consider the second Newton’s law in the form:

mẍ = F (x).



The mechanical work and formula for the kinetic energy

Then multiply both parts on the velocity ẋ :

mẍẋ = F (x , ẋ , t)ẋ

and integrate over t:

m
ẋ2

2
−m

ẋ0
2

2
=

∫ t

0
F (x(τ), ẋ(τ), τ)dτ.

So we obtain the law for changing kinetic energy but also we see
that the kinetic energy as mẋ2/2 have straightforward connection
with mechanical work. Such formula appears for example in a work
of Coriolis, ”Du calcul de l’effet des machines”, 1829 (see page 15
of that work).



Second Newton’s law and phase plane

x

y
Let us consider second
Newton’s for one-dimensional
movement with special form of
the force. Namely for the force
did not dependent on time:

mẍ = f (x , ẋ).

This equation of the
second order can be rewritten
into two firs order equation:

ẋ = y ,

ẏ =
1

m
f (x , y).

The solution of this system can be considered as a parametrically
defined curve (x(t), y(t)) on the plane (x , y).



Typical phase spaces

I A configuration space for the pendulum is S and phase space
for pendulum (α, α̇) ∈ S× R.

I A configuration space for spherical pendulum is
S× [−π/2, π/2] and a phase space for the is
(φ, ψ, φ̇, ψ̇) ∈ S× [−π/2, π/2]× R2.

I A configuration space for a double pendulum is S× S = T and
the phase space for the is T× R2.



Trajectory and full energy

The formula for full energy connects the kinetic energy and
potential energy.

mẋ2

2
+ Π(x) = E .

This formula give the dependency of ẋ on Π(x) like

ẋ = ±
√

2

m
(E − Π(x)).

Thus for one dimensional movement one can obtain the trajectory
without of solution for the differential equation.



Trajectories and full energy
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Consider a free
fall. The Newton’s second law:

mẍ = −mg .

Multiply on ẋ
both part of the formula. One
time integration over t yields:

m
ẋ2

2
= −mgx + E .

The trajectories are parabolas:

ẋ2 =
2

m
E − 2gx .

Then the trajectories on the phase plane with energy E is defined
by the formula:

ẋ = ±
√

2

m
E − 2gx



Trajectories and full energy
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If the movement
is defined by the Hook’s law:

mẍ = −kx ,

then after multiplying
both part of the equation on ẋ :

mẍẋ = −kxẋ ,

and integration over t we will
get the following formula for the full energy:

m
ẋ2

2
= −k x

2

2
+ E .

This means the trajectories are ellipses:

k
x2

2
+

ẋ2

2
= E .



A pendulum

φ

mg

l

ml2φ̈+ gml sin(φ) = 0

φ̈+
g

l
sin(φ) = 0.

d2

g
l dt

2
φ+ sin(φ) = 0.

τ =

√
g

l
t.

d2φ

dτ2
+ sin(φ) = 0.



Energy of the pendulum
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φ̇
d2φ

dτ2
+ sin(φ)φ̇ = 0.

φ̇2

2
− cos(φ) = E .

φ̇ = ±
√

2E + 2 cos(φ).

I Oscillation movement is defined by values of the energy
−1 < E < 1.

I A special case of the energy E = 1 defines the separatrix
motion.

I A rotation is defined by the values of the energy E > 1.



Trajectories and full energy

Let us consider the movement in the central gravitational force.
The sum of the radial forces are

mr̈ = mr φ̇2 − G
Mm

r2
.

The equation for the tangential forces:

m
d

dt
(r2φ̇) = 0.

Every one can recall our tutorial about Newton’s gravitational law
that after rewriting we obtained the following system of equations:

ρ̈ =
1

ρ3
− 1

ρ2
,

and
ρ2φ̇ = 1.



Integration of the equation of motion

Multiply the equation for the radial motion on ρ̇:

ρ̇ρ̈ =
ρ̇

ρ3
− ρ̇

ρ2
.

It yields:
d

dτ

(
ρ̇2

2

)
= −1

2

d

dτ

(
1

ρ2

)
+

d

dτ

(
1

ρ

)
.

Or the same form:

d

dτ

(
ρ̇2

2

)
=

d

dτ

(
−1

2

1

ρ2
+

1

ρ

)
.

Integrate the left and right-hand sides of the equation:

ρ̇2

2
= −1

2

1

ρ2
+

1

ρ
+ E .



Energy levels for different type of motions
Now we obtain two first order equations with additional constant
of integration E :

ρ2φ̇ = 1

and
ρ̇2

2
+

1

2

1

ρ2
− 1

ρ
= E , E = const .

The different values of the energy defines the different types of
movement.
The fit values for E :

E ≥ 1

2

1

ρ2
− 1

ρ
,

Then minimal value of E can be obtained from the equation:

dE

dρ
≡ 1

ρ2
− 1

ρ3
= 0.

Then
E ≥ −1/2.



Energy levels for different type of motions
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Let us consider the numbers of
the real roots for the equation

1

2

1

ρ2
− 1

ρ
− E = 0.

The same for ρ 6= 0:

2Eρ2 + 2ρ− 1 = 0.

The determinant of this quadratic equation is:

D = 4 + 8E .

We are interested in real valued solutions then we obtain the same
condition E ≥ −1/2.



Different types of movement
The formula from Tutorial 4 looks like:

ρ =
1

1 +
√

1 + 2E sin(φ)
.

I If E = −1/2 then ρ = 1, ρ̇ = 0. The trajectory is a circle.
I If −1/2 < E < 0 then we obtain two positive solutions of the

quadratic equation and the trajectory is an ellipse:

ρ1,2 =
−2±

√
4 + 8E

4E
.

I If E = 0 then
1

2

1

ρ2
− 1

ρ
= 0, ρ = 1/2.

Then ρ̇ = 0 as ρ = 1/2 or ρ =∞. This trajectory is a
parabola.

I If E > 0 then there exists only one positive value when ρ̇ = 0:

ρ =
−2 +

√
4 + 8E

4E
.



Orbital speed and escape velocity

I The orbital velocity can be obtained as follows

ρ = 1, φ̇ = 1, v1 = ρφ̇ = 1.

I The escape velocity equals to:

ρ = 1/2, φ̇ = 1/ρ2 = 4, v2 = ρφ̇ = 2.
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