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Leonardo da Vinci

Figure: 1478-1518 Leonardo da Vinci, Notebook
”The Codex Arundel”. Digitized manuscripts,
British Library (Arundel ms 263 f041r.jpg)

Leonardo da
Vinci researched
the friction
between two
solid bodies with
different stiffness
and two bodies
with interlayer
(1493). Leonardo
constructed
friction
roller bearing
which were used
in water mills
and in lifting
mechanisms.



Guillaume Amontons

Guillaume Amontons studied the dry friction between two solid
bodies and formulated two laws for dry friction (1699).

I The friction is proportional to the loaded on the surface.

I Friction is independent on the area of contacted surfaces.

Both laws were obtained after study experimental data and both
look not trivial. For example about the second law he wrote that
there was wrong thinking that the friction grows with the growing
of the contact areas.



Amontons’s experiment

Figure: M Amonton De La
Resistance cause’e dans les
machines Histoire de l’Academie
royale 1699, 19 Dec.,P. 213

To
proof the independents of the
friction on the contact areas
he got a pile of several plates
and loaded them by some
load C . In such construction
every plate is under the friction
from the upper plate and the
lower plate. So the summary
force of friction is equal 2Ffr
and the force for movement
on n-th plates is equal to

F = n2Ffr , Ffr = Nf F = 2nfN.



De La Hire

De La Hire justified the second of the Amontons’s friction law by
experiment (1700). He also suggested two different the
explanations of this phenomenon for elastic and for hard bodies.
Let us consider two contacted surfaces as a fields of springs. So
the the force to move positions of all springs of the field depends
on the number of the springs multiplied by the pressure and the
sum of all forces of the field depends only on the load but does not
depended on the number of the springs contained the field. If the
contact surfaces are hard then due to the roughness of both bodies
the load down to the small surface irregularities then for the
movement the load move up. But for such vertical movement the
weight of the load are important only so the movement does not
depend on the contact area.



Euler’s contribution

Leonhard Euler at 1748 formulated the dry friction laws and add
ones more with respect the laws by Amonton. Namely, Leonhard
Euler claim that the force of the dry friction does not dependent
on the speed between contacted surfaces. Also Leonhard Euler
paid attention on the discontinuous on the speed for the force of
friction. In mathematical point of view this force has a first order
discontinuity.



Coulomb’s law

Figure: Colulomb. Theorie des machines simple, Paris,1781

Coulomb made a lot of experiments with the moving bodies under
the dry force of friction (1781). His experiments shown the
independence the force of friction on the speed of between two
bodies. Therefore third law for dry friction was formulated.

I The friction coefficient is independent on the speed between
bodies.



Roughness of the surface

Fractal-like surface of

contacted bodies
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The contact surface
can be considered as a fractal
with the scaled roughness.
The same structure of the
roughness repeated on a set of
the scales from typical length
beginning at 1 mm up to
the 100 nm. Review about the
roughness and dry friction can
be found in J.A.Greenwood
and J.J.We 2001

https://link.springer.com/article/10.1023/A:1016340601964
https://link.springer.com/article/10.1023/A:1016340601964


Contact spots

The contact area does not coincide with the visual area of the
contact surface of the body. Experiments shows the contact area
can be less than 1000 times that the all visible contact area for the
body. The force of the friction collect a sum of the friction forces
of the contact areas of the contact surfaces.

dFi = f sign(v)pidSi ,

here pi – pressure in the i-th contact spot and v is velocity. To
obtain value of the friction for the i-th contact spot we must
integrate over all spot:

Fi = f sign(v)

∫
Si

pidSi .



Contact spots

So full force of the friction is a sum over all contact spots:

F = sign(v)f
∑
i

∫
Si

pidSi , N =

∫
Si

pidSi .

This formula shows that general assumptions are foundation stone
for the independence of the friction force with respect to contact
area but on the normal load only.
In a lot of experiment shown that the electrical result were
approved by Board and Tabor with their experiment (1934)



Two components of the friction force

A scheme friction dendence
on a roughness

(by I.V.Kragelskii
”Friction and wear”)
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In the contact spot
appears adhesive forces
on molecular level.
The experiments shows
that the decreasing
of roughness gives
decreasing of the friction
on the initial stage
but next decreasing
of the roughness
implies to increasing
of the friction.

f = f0 + fa.

Here f0 is the
term which defines the

deformation forces and fa connected with all adhesive forces.



The difference between static and kinematic dry friction

The static dry friction fs is bigger that kinematic one fk . This
difference is used for example in Anti Blocking System in Cars. If
one use emergency braking without blocking the wheels then at
any time the contact spot between the wheel and the road are
static. Therefore the braking without blocking the wheels are more
efficient.



A thought experiment with dry friction

Let us consider a box with the thread on a slanted surface.
For small slant we feel a threshold force to change the position of
the box when we pull them on the thread. When the box slides on
the slanted surface we can change it direction by any small
orthogonal force. This means that movement with such sliding is
not stable. The ABS allows to avoid the sliding with blocked
wheels and save control on the car when one use emergency
braking.



Oscillator with dry friction

~F = kx

~N

m~g
~Fµ = µ ~N

If ẋ 6= 0 then movement
of a load with
a spring is defined by
the following equation:

mẍ = −µmg sign(ẋ)−kx .

If ẋ = 0, then:

mẍ ∈ (−µmg + kx , µmg + kx).

Formally it means:

mẍ ∈
{

−µmg sign(ẋ)− kx , ẋ 6= 0;
(−µmg + kx , µmg + kx), ẋ = 0.

Such model is a differential inclusion. The differential inclusion
allows us to consider the set x ∈ (−µmg/k, µmg/k) and ẋ = 0 as
equilibrium.



Dynamics of the oscillator with dry friction
Consider for simplicity the case sign(ẋ) 6= 0. Let us define√
kt/
√
m = τ . It yields:

x ′′ = −x − f sign
(
x ′
)
, f =

µmg

k
.

Then the equation for the movement as x ′ > 0 looks like:

x ′′ = −x − f .

Multiply the equation by x ′ then:

x ′x ′′ + x ′x = −fx ′.

This equation we can rewrite as follow:(
(x ′)2

2
+

x2

2

)′
= −fx ′.

This formula shows that the sum in the left-hand side decreases for
x ′ > 0.



Dynamics of the oscillator with dry friction

x

x ′

equilibrium

trajectory

Integration on x yields:

(x ′)2

2
+

x2

2
= −fx + E .

Here
E is a constant of integration.
We rewrite
previous formula in the form:

(x ′)2 + (x + f )2 = f 2 + 2E .

That means the trajectory is a semi-circle with the center at
(−f , 0) and radius R =

√
f 2 + 2E .



Dynamics of the oscillator with dry friction

x
x ′

equilibrium

trajectory

In case sign(x ′) < 0 we obtain:

x ′′ = −x + f .

After multiplying
by x ′ and integrating
we can rewrite as follow:(

(x ′)2

2
+

x2

2

)′
= fx ′.

So, the sum in the left-hand side decreases for x ′ < 0 also.
After integrating we obtain:

(x ′)2 + (x − f )2 = f 2 + 2E1,

That means the trajectory is a semi-circle with the center at (f , 0)

and radius R =
√

f 2 + 2E1.



Dynamics of the oscillator with dry friction

x

x ′
trajectory

equilibrium

Let the
initial point of the trajectory be
(x , x ′) = (x0, 0) where x0 < −f .
The part of the trajectory for
x ′ > 0 is the semicircle with center
at (−f , 0) and radius r = −f − x0.
Then the right point
of this semicircle (x1, 0), where
x1 = x0 + 2(−f − x0) = −2f − x0

If x1 > f then this point is initial one for the lower semicircle with
left point (x1, 0) and center at (f , 0) and radius r = (x1 − f ).
The left point for this lower semicircle is (x2, 0), where
x2 = x1 − 2(x1 − f ) = −x1 + 2f = −(−2f − x0) + 2f = x0 + 4f .
If −f ≤ x2 then the point (x2, 0) is equilibrium.
In opposite case the point (x0 + 4f , 0) is beginning of the next
circle. This next circle begins closer to the equilibrium state then
the first circle at (x0, 0).
As the result we get the sequence {xn}nk=0 until xn ∈ [−f , f ].



Painlevé’s paradoxes. Example. Brake pad

~Ff

~N

m~g

l

h

In 1895 Paul Painlevé published
critique of the Coulomb’s friction law.
These thesis are known as Painlevé
paradoxes. That critical notes
initialized new conceptions of rigid
bodies in some problems of dynamics.
The simplest of the Painlevé paradox
is follows. A friction force: Ff = µN.
A sum of torques: Nµh = Nl −mgl ,
Therefore: N(µh − l) = −mgl As a

result we obtain:

N =
mgl

l − hµ
.

This means that for l = −hµ the reaction of the support is equal
infinity.



Painlevé’s paradoxes. Disk in a wedge

~Ff

~N
~P

~Q

φ

Let’s consider a rotating
disk under external horizontal force ~P
is situated into an angle with value φ.
A friction coefficient
between the disk and a horizontal
plane is equal µ. A friction between
upper plane and the disk equals zero.
Vertical forces:

Q sin
(π

2
− φ

)
= N,

A sum of horizontal forces:

P + Ff = Q cos
(π

2
− φ

)
, Ff = µN.

As a result we obtain:

P + µN = N tan(φ)⇒ N =
P

tan(φ)− µ
.



Painlevé’s paradoxes. Two beads on rods

(1)

(2)
α

x1

x2

X

λ sin(α)

λ cos(α)
λ sin(α)

Let’s consider
two parallel rods (1) and (2) and two
beads on both these rods. The beads
are connected by a light weight rod.
The low bead slides
along the rod with dry friction µ and the
upper bead slides without any friction.
A
horizontal force X acts on the low bead.
Define by λ a force along the connecting
rod, λ > 0 for a contracting force and

λ < 0 for stretching one.



Painlevé’s paradoxes. Two beads on rods

(1)

(2)
α

x1

x2

X

λ sin(α)

λ cos(α)
λ sin(α)

ẍ1 = λ cos(α),

ẍ2 = X − µ sign(ẋ2)λ sin(α)− λ cos(α),

λ cos(α) = X − µ sign(ẋ2)λ sin(α)− λ cos(α),

λ =
X

µ sign(ẋ2) sin(α) + 2 cos(α)

So, λ =∞ when the
angle α and µ are connected by formula;

tan(α) = − 2

µ
sign(ẋ2).



Discussions

Figure: P. Painlev’e, De Sparre, Hammel, Klein

Figure: Lecornu, Pfeifer,Prandtl, von Mises, Filippov.



Summary

I History of experimental studying the dry friction.

I Physical basics of the dry friction.

I Oscillations under the dry friction.

I Painlevé’s paradoxes connected to the dry friction.
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