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Systems of first-order equations and linear

equations of n-th order

dny

dxn
+

n−1∑
k=0

ak
dky

dxk
= f (x),

u1(x) = y(x), u2(x) =
dy

dx
, . . . ,

uk+1(x) =
dky

dxk
, . . . , un−2(x) =

dn−1y

dxn−1
;

du1

dx
= u2,

du2

dx
= u3, . . . ,

dun
dx

+
n−1∑
k=1

ak+1uk = f (x).
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dU

dx
+ AU = B(x)

Where:

U =
(
u1 u2 . . . un−1 un

)
,

B(x) =
(
0 0 . . . 0 f (x)

)
And the coefficients matrix A is given by:

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
a1 a2 a3 . . . an−1 an
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A general form of a system of equations

dY

dx
= AY + B(x)

where:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 , Y =


y1

y2
...
yn

 , B(x) =


b1(x)
b2(x)

...
bn(x)


In this case, the coefficients matrix A is a constant matrix,
and the vector-function B(x) is a known function of x .
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A general form of a system of equations

Therefore, the general form of the linear system of first-order
differential equations with a known vector-function on the
right-hand side can be represented by:

dY

dx
=


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



y1

y2
...
yn

+


b1(x)
b2(x)

...
bn(x)
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Fundamental system of solutions

To find the eigenvalues and eigenvectors, we can substitute
x = veλt , where λ is the eigenvalue and v is the corresponding
eigenvector.

d(veλt)

dt
= A(veλt)

We get:

λveλt = Aveλt

Dividing both sides by eλt and rearranging, we obtain:

Av = λv

Now, we have a standard eigenvalue-eigenvector equation. To
solve for the eigenvalues λ and eigenvectors v, we need to find
nontrivial solutions.
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Fundamental system of solutions

The eigenvalues λ can be obtained by solving the
characteristic equation:

det(A− λI) = 0

where I is the identity matrix of the same size as A.
Once we have the eigenvalues, we can find the corresponding
eigenvectors by substituting each eigenvalue back into the
equation Av = λv and solving for v.
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Algebraic and geometric dimensions

In a general case the characteristic equation can be rewritten
in the form:

m∏
k=1

(λ− λk)mk = 0.

The λk is a root of the characteristic equation of order mk .
The order k is the algebraic repetition of the eigenvalue.
Each eigenvalue may correspond to some quantity of
eigenvectors. The number of such linear independent vectors
is called geometrical order of the eigenvector.
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A general case

In a general case the algebraic multiplicity and the geometric
one coincide.

A =

(
1 2
2 1

)
, |A− λI | = (1− λ)2 − 4 = 0,

λ1 = 3, v1 =

(
1
1

)
, λ2 = −1, v2 =

(
1
−1

)
.

A fundamental set of the solutions is:

y1 =

(
1
1

)
e3x , y2 =

(
1
−1

)
e−x , Y =

(
e3x e−x

e3x −e−x
)
.
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A special example of repeated eigenvalue

Let’s consider

d

dx
y =

(
1 1
0 1

)
y,

then ∣∣∣∣ 1− λ 1
0 1− λ

∣∣∣∣ ≡ (1− λ)2 = 0, λ = 1.

The eigenvector is a nontrivial solution of the system:(
0 1
0 0

)(
v1

v2

)
= 0⇒ v =

(
1
0

)
.
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A special example of repeated eigenvalue

Let’s consider

d

dx
y =

(
1 1
0 1

)
y,

then ∣∣∣∣ 1− λ 1
0 1− λ

∣∣∣∣ ≡ (1− λ)2 = 0, λ = 1.

The eigenvector is a nontrivial solution of the system:(
0 1
0 0

)(
v1

v2

)
= 0⇒ v =

(
1
0

)
.
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A special example of repeated eigenvalue

Suppose the second solution of the system has a form:

ỹ = xex
(

1
0

)
+ ex ṽ.

Substituting the ỹ one gets:

xex
(

1
0

)
+ ex

(
1
0

)
+ ex ṽ =

(
1 1
0 1

)(
xex
(

1
0

)
+ ex ṽ

)
(

1
0

)
+

(
ṽ1

ṽ2

)
=

(
ṽ1 + ṽ2

ṽ2

)
⇒ ṽ =

(
0
1

)
.
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A special example of repeated eigenvalue

As a result one gets the fundamental set of solutions might be
represented as a matrix:

Y =

(
ex x ex

0 ex .

)
.
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A fundamental system of solutions

Suppose for all λk the algebraic and geometric dimensions
coincide and is equal to mk . Then one can get n-th linear
independent solutions of given system of differential equations:

yj = vk1e
λkx , yj+1 = vk2e

λkx , . . . , yj+m = vkme
λkx ,

where j =
∑k−1

i=1 mi .
If the algebraic order is mk and the geometrical dimension of
the eigenvectors for the given eigenvalues is jk , then the
additional solutions of the system of equations can be found in
the form :

yjk+1 = eλkx(vj1x + ṽj1+1), . . . , ymk
= eλkx

mk−jk∑
j=1

ṽjx
j .
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Repeated roots of the characteristic equations

To find all the linearly independent eigenvectors corresponding
to a repeated eigenvalue λ, we can use the concept of
generalized eigenvectors. We find a set of linearly independent
generalized eigenvectors associated with λ, which satisfy:

(A− λI)vj = vj−1

where vj represents the jth generalized eigenvector for the
eigenvalue λ. Here, j ranges from 1 to m (multiplicity of λ),
and we take v0 = 0.
These generalized eigenvectors span the entire eigenspace
associated with λ. If the geometric multiplicity of λ is less
than its algebraic multiplicity (i.e., if there are fewer linearly
independent eigenvectors than the multiplicity of λ), the
remaining linearly independent vectors will be generalized
eigenvectors.
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Solution of homogeneous system of equations

Let’s denote this vector as yk. Then:

dyk
dx

= Ayk

To find the solution, we need to find the eigenvalues and
eigenvectors of the matrix A. Let’s denote an eigenvalue as λ
and its corresponding eigenvector as v. For simplicity we will
define eigenvalues as λi , i ∈ {1, . . . , n}, perhaps some of the
eigenvalues are equivalent.
The solution of the homogeneous part of the linear system can
be expressed as a linear combination of the eigenvectors v
multiplied by exponential terms:

xh = c1v1e
λ1x + c2v2e

λ2x + . . . + cnvne
λnx

where c1, c2, . . . , cn are constants determined by initial
conditions or additional constraints.
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Wronskian of the fundamental set of solutions

Theorem

The Wronskian W (U) of a fundamental set of solutions of the
system of the first order differential equations

U ′ = AU

is a solution of the equation:

W ′(U) = tr(A)W .

Here the operator tr(A) ≡
∑n

k=1 akk .

Systems of first-order equations Linearized equations Summary



Systems of the first order linear differential equations with constant coefficients

The idea of a proof for the theorem about an

evolution of the Wronskian

Let’s differentiate the Wronskian and substitute the the
right-hand sides of the system of equations:

u′k =
n∑

j=1

akjuj .

Then rewrite the sum of n determinants of matrices among
which only one term will be linear independent: akkuk . Pay
into attention this properties one gets the statement of the
theorem.
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The idea of a proof for the theorem about an

evolution of the Wronskian

To clarify the idea lets consider the system of two equations:(
u′1
u′2

)
=

(
a11u1 + a12u2

a21u1 + a22u2

)
.

Suppose the set of fundamental solutions is given by the
matrix:

U =

(
U11,U12

U12,U22

)
, W (U) = U11U22 − U21U12,

W ′ = U ′11U22 + U11U
′
22 − U ′21U12 − U21U

′
12 =

(a11U11 + a12U21)U22 + U11(a21U12 + a22U22)−
(a21U11 + a22U21)U12 − U21(a11U12 + a12U22)

= (a11 + a22)(U11U22 − U12U21) = tr(A)W .
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Non-homogeneous systems

Let’s consider the system:

Y ′ = AY + B .

Define the fundamental set of solutions for the complimentary
system (homogeneous one):

U ′ = AU , det(U) 6= 0.

Denote Y = U · C (x), where C (x) is vector of unknown
functions. After substitution of the formula for Y into the
equation one gets:

U ′ · C + U · C ′ = A · U · C + B ,

U · C ′ + U ′ · C − A · U · C = B ,

U · C ′ + (U ′ − A · U) · C = B .
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Non-homogeneous systems

Through the non-zero value of the Wronskian for the
fundamental set of solutions the inverse matrix of U exists and
hence:

U · C ′ = B ⇒ C ′ = U−1B ,

C =

∫
U−1(x) · B(x)dx .
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Non-homogeneous system. An example

d

dx
y =

(
1 1
0 1

)
y +

(
sin(x)

1

)
.

U =

(
ex x ex

0 ex .

)
, U−1 =

(
e−x −x e−x

0 e−x .

)
,

y =

(
ex x ex

0 ex .

)∫ (
e−x −x e−x

0 e−x .

)(
sin(x)

1

)
dx =(

ex x ex

0 ex .

)(∫
e−x sin(x)− xe−xdx∫

e−xdx

)
.
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Non-homogeneous system. An example

y =

(
ex x ex

0 ex .

)(
−e−x

(
1
2
(sin(x) + cos(x))− (x + 1)

)
−e−x

)
+(

ex x ex

0 ex

)(
C1

C2

)
,

y =

(
1− 1

2
(sin(x) + cos(x))
−1

)
+

(
exC1 + x exC2

exC2

)
.
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Example a pendulum

The equation for the pendulum has the form:

φ̈ + sin(φ) = 0.

Present this equation in form of a system of the first-order
equation: (

φ̇1

φ̇2

)
=

(
φ2

− sin(φ1)

)
.

Obviously, the pendulum has two points of equilibrium. There
are (φ1, φ2) = (0, 0) and (φ1, phi2) = (π, 0). For studying
properties around these points we linearize the equation. That
means we remain the linear part of the equation only.
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An example. A pendulum

−0.4 −0.2 0.2 0.4

−0.4

−0.2

0.2

0.4

φ1

φ2

At
the point (φ1, φ2) = (0, 0) we get:(

ẏ1

ẏ2

)
=

(
y2

−y1

)
.

Here y1 ∼ φ1 and y2 ∼ φ2. Then
due to the classifications of the
system of two differential equations
of the first order one get the center

at the point (y1, y2) = (0, 0).
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Example a pendulum

2.5 3 3.5 4

−0.5

0

0.5

φ1

φ
2

At
the point (φ1, φ2) = (π, 0) we get(

ẏ1

ẏ2

)
=

(
y2

y1

)
.

Here y1 ∼ π − φ1 and y2 ∼ φ2.
Then we get the saddle
point at the point (y1, y2) = (0, 0)
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Example a pendulum

1 2 3

−1

1

φ1

φ2
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Yet another example. A predator-pray system

A.J. Lotka (1925) and V. Volterra (1926) assumed the model
with population of two kind like predators and preys.
Let x be number of preys and y be numbers of predators. The
preys reproduced proportional their quantity and disappear
proportional the numbers of the predators:

dx = (α1x − β1yx)dt, α1, β1 > 0.

The number of the predators increases proportional by the
preys and disappeared proportional their quantity:

dy = (−α2y + β2yx)dt, α2, β2 > 0.
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Yet another example. A predator-pray system

As a result the system of the differential equations are:

dx

dt
= (α1 − β1y)x ,

dy

dt
= −(α2 − β2x)y .
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The simplest form of the predator-prey model

The points of equilibrium are (x , y) = (0, 0) and
(x , y) = (α2/β2, α1/β1).
It is convenient to change the variables:

x =
α2

β2
u, y =

α1

β1
v .

As a result we obtain:

du

dt
= a1(1− v)x ,

dv

dt
= −a2(1− u)v .

The changing of the independent variable t = τ/a1 yields:

du

dτ
= (1− v)u,

dv

dτ
= −k(1− u)v .

Here k = a2/a1 is a parameter of the model.
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The neighborhoods of equilibrium points of the

predator-prey model

0 0.2 0.4 0.6

0.2

0.4

0.6

u

v

In the neighborhood of the origin
the linearized system looks like:

du

dτ
∼ u,

dv

dτ
∼ −kv .

So the solutions are u ∼ u0 exp(τ)
and v ∼ v0 exp(−kτ).
Therefore the point (0, 0) is
a saddle for the linearized equation.
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The neighborhoods of equilibrium points of the

predator-prey model

0.6 0.8 1 1.2 1.4

0.8

1

1.2

1.4

u

v

The linear equation
in the neighborhood of the point
(u, v) = (1, 1) can be obtained
after the changing of the variables:

u = X + 1, v = Y + 1.

The linear
system for X ,Y has the form:

dX

dτ
= Y ,

dY

dτ
= −kX .

According to the previous classification we obtain the center
for the linear approximation around the equilibrium (1, 1).
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The neighborhoods of equilibrium points of the

predator-prey model

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

u

v
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