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Schrödinger equation

Schrödinger equation in a simplest form can be written as

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x)Ψ.

Here ~ is a Planck constant, m is a mass of a particle and V (x) is
a potential field which defines the behavior of the particle in a
classical mechanics.

I Potential for a free particle is follows: V (x) ≡ 0.

I Potential for a linear oscillator is V (x) = k x2

2 .

I Potential for an electron of hydrogen atom: V (~x) = − e2

ε0r
.

Schrödinger equation Singular point Irregular poin Degenerated point Complex eigenvalues Summary



I. Applications in quantum mechanics. , II. Singular points of the first order equations O.M. Kiselev Innopolis University

Typical parameters of quantum systems

I ~ ∼ 6.62607015× 10−34 J/Hz is the value of the Planck
constant;

I e ∼ 1.602× 10−19 C is an electron charge;

I m ∼ 9.1× 10−31 kg is a mass of an electron;

I r ∼ 5.292× 10−11 m is a distance between the kernel and
electron (Bohr radius);

I ε0 ∼ 8.8854× 10−12 F/m is a vacuum permittivity.

Schrödinger equation Singular point Irregular poin Degenerated point Complex eigenvalues Summary



I. Applications in quantum mechanics. , II. Singular points of the first order equations O.M. Kiselev Innopolis University

Wave motion

When we consider waves and its dependence on time we should
understand a direction of wave motion.
let us consider two different solutions of a Schrödinger equation
without external field:

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
;

τ =
1

h
t, ξ =

√
2m

~
x ,

i
∂Ψ

∂τ
= −∂

2Ψ

∂ξ2
.
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Wave motion

In the simplest case two different solutions can be written:

Ψ± = e−i(Eτ±
√
Eξ).

The wave phase with the sign + is constant at line parallel by a
straight-line ξ = −τ

√
E . This means the wave moves in a negative

direction with respect to ξ axis.
In contrast, the wave phase of the solution with − is constant on
all lines which are parallel by a straight-line ξ = τ

√
E . This wave

moves in a positive direction with respect to the axis ξ.
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Oscillations in potential well

Let us consider oscillations in an infinite potential well ξ ∈ (0, λ).
The Schrödinger equation with additional boundary conditions is
written as:

i
∂Ψ

∂τ
= −∂

2Ψ

∂ξ2
, Ψ|ξ=0 = Ψ|ξ=λ = 0.

A special solution which is periodic on time has a form:

Ψ(ξ, τ) = e−iEτψ(ξ).

A substitution into the Schrödinger equation yields:

ψ′′ + Eψ = 0, ψ|ξ=0 = ψ|ξ=λ = 0.

Solution can be written for discrete set of energy En:

ψ = sin
(√

Enξ
)
, En =

π2

λ2
n2, n ∈ N.
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A barrier as a potential

Let us consider the potential with a threshold shape.

U(ξ) =


0, −λ < ξ;

u, −λ ≤ ξ ≤ λ;
0, λ < ξ.

On left-hand side of the barrier a solution of the Schrödinger
equation looks as

Ψ = e−i(Eτ−
√
Eξ) + Re−i(Eτ+

√
Eξ).

Here first term is a falling wave. This waves move to the barrier.
Second term is reflected wave, because this wave moves from the
barrier.
On right-hand side of the barrier a solution contains a transmitted
wave only:

Ψ = Te−i(Eτ−
√
Eξ).
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Tunnel effect

The wave with the energy E for the Schrödinger equation looks
like:

Ψ = e−i(Eτ)ψ(ξ).

In this case the one-dimension Schrödinger equation looks like:

ψ′′ + (E − U(ξ))ψ = 0.

If u > E this means the energy to overcome this threshold is less
that the threshold level. For the classical particle does not be
passed through such threshold. Let us find a possibility to pass this
threshold for quantum one.
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Falling and reflected waves

General solution before the threshold:

ψ = e i
√
Eξ + Re−i

√
Eξ.

This formula contains the falling wave and reflected one.
At the threshold the solution has another form:

ψ = B1e
√
u−Eξ + B2e

−
√
u−Eξ.

After the threshold the solution has transmitted wave only:

ψ = Te i
√
Eξ.

Our problem is to find the transmitted and reflected waves.
Formally it means one should find the coefficients R and T .
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A matching of the solutions

These solutions and their derivatives of first order should be
matched at the point ξ = −λ:

e−iωλ + Re iωλ = B1 e
−kλ + B2 e

kλ,

iω e−iωλ − iω R e iωλ = k B1 e
−kλ − k B2 e

kλ.

The same matching should be made at the point ξ = λ:

B1 e
kλ + B2 e

−kλ = Te iω λ,

k B1 e
kλ − k B2 e

−kλ = iωT e iωλ.

Here ω =
√
E , k =

√
u − E .

So we have four equations with four unknown values R,T ,B1,B2.
We are interested in R and T only.
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The transmission coefficient

One can solve the system of four linear equations by hand or using
some computer algebra system.
The transmission coefficient have the following form:

|T | =
1√

u−E
E sinh2

(√
u − Eλ

)
+ cosh2

(√
u − Eλ

) ×
1√

E
u−E sinh2

(√
u − Eλ

)
+ cosh2

(√
u − Eλ

) .
The transmission coefficient exponentially decreases with respect
to width λ and height of the barrier u − E .
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The reflection coefficient

|R| =
2u sinh(2

√
u − Eλ)√

E sinh2(
√
u − Eλ) + (u − E ) cosh2(

√
u − Eλ)

×

1√
E cosh2(

√
u − Eλ) + (u − E ) sinh2(

√
u − Eλ)

.
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Singular points of the first-order equations

Let’s consider the first-order equations in the form:

dy

dx
=

a1y + b1x

a2y + b2x
.

We will focus on neighborhood of the irregular point (0, 0).
The first order equation connects to the two first-order equations
for x(t) and y(t) as a parametric given function y(x):

dy

dt
= a1y + b1x ,

dx

dt
= a2y + b2x .
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Exponents and eigenvalues

The solution of the linear system will be constructed as a vector:(
y
x

)
=

(
α1

α2

)
eλt .

Substituting the formula into the system one obtains:

λeλtα1 = a1α1e
λt + b1α2e

λt ,

λeλtα2 = a2α1e
λt + b2α2e

λt .

It yields:

(a1 − λ)α1 + b1α2 = 0,

a2α1 + (b2 − λ)α2 = 0.
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Eigenvalues

The system can be represented as(
(a1 − λ) b1

a2 (b2 − λ)

)(
α1

α2

)
= 0

Non-trivial solutions exist if∣∣∣∣ (a1 − λ) b1

a2 (b2 − λ)

∣∣∣∣ = 0,

or

(a1 − λ)(b2 − λ)− a2b1 = 0,

λ2 − (a1 + b2)λ+ (a1b2 − a2b1) = 0,

λ1,2 =
(a1 + b2)±

√
(a1 − b2)2 − 4a2b1

2
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The eigenvalues

I (a1 − b2)2 − 4a2b1 > 0, then λ1,2 ∈ R;

I (a1 − b2)2 − 4a2b1 = 0, then λ = (a1 + b2)/2;

I (a1 − b2)2 − 4a2b1 < 0, then λ1,2 ∈ C.
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An unstable knot. λ1 > λ2 > 0.

dy
dt = 2y + x ,
dx
dt = y + 2x .

∣∣∣∣ (2− λ) 1
1 (2− λ)

∣∣∣∣ = 0,

λ1 = 3, α1 =

(
1
1

)
, λ2 = 1, α2 =

(
1
−1

)
.

A general solution:(
y
x

)
= C1e

3t

(
1
1

)
+ C2e

t

(
1
−1

)
.
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A stable knot. λ1 < λ2 < 0

dy
dt = −2y + x ,
dx
dt = y − 2x .

∣∣∣∣ (−2− λ) 1
1 (−2− λ)

∣∣∣∣ = 0,

then

λ1 = −3, α1 =

(
1
−1

)
, λ2 = −1α2 =

(
1
1

)
.

A general solution:(
y
x

)
= C1e

−3t

(
1
−1

)
+ C2e

−t
(

1
1

)
.
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A saddle point. λ2 < 0 < λ1

dy
dt = y + 2x ,
dx
dt = 2y + x .

∣∣∣∣ (1− λ) 2
2 (1− λ)

∣∣∣∣ = 0.

λ1 = 3, α1 =

(
1
1

)
, λ2 = −1, α2 =

(
1
−1

)
.

A general solution:(
y
x

)
= C1e

3t

(
1
1

)
+ C2e

−t
(

1
−1

)
.

Schrödinger equation Singular point Irregular poin Degenerated point Complex eigenvalues Summary



I. Applications in quantum mechanics. , II. Singular points of the first order equations O.M. Kiselev Innopolis University

An unstable line. λ1 = 0, λ2 > 0

dy
dt = y + x ,
dx
dt = y + x .

∣∣∣∣ (1− λ) 1
1 (1− λ)

∣∣∣∣ = 0.

λ1 = 0, α1 =

(
1
−1

)
, λ2 = 2, α2 =

(
1
1

)
.

A general solution:(
y
x

)
= C1

(
1
−1

)
+ C2e

2t

(
1
1

)
.
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A stable line. λ1 < 0, λ2 = 0

dy
dt = −y − x ,
dx
dt = −y − x .

∣∣∣∣ (−1− λ) −1
−1 (−1− λ)

∣∣∣∣ = 0,

then

λ1 = −2, α1 =

(
1
1

)
, λ2 = 0, α2 =

(
1
−1

)
.

A general solution:(
y
x

)
= C1e

−2t

(
1
1

)
+ C2

(
1
−1

)
.

Schrödinger equation Singular point Irregular poin Degenerated point Complex eigenvalues Summary



I. Applications in quantum mechanics. , II. Singular points of the first order equations O.M. Kiselev Innopolis University

A degenerated stable knot. One eigenvalue and two
eigenvectors

dy
dt = y ,
dx
dt = x .

∣∣∣∣ (1− λ) 0
0 (1− λ)

∣∣∣∣ = 0,

λ1 = 1, α1 = et
(

1
0

)
, λ2 = 1, α2 = et

(
0
1

)
.

A general solution:(
y
x

)
= C1e

t

(
1
0

)
+ C2e

t

(
0
1

)
.
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A degenerated unstable knot. Joint vector

dy
dt = y + x ,

dx
dt = x .

∣∣∣∣ (1− λ) 1
0 (1− λ)

∣∣∣∣ = 0,

λ1 = 1, α1 = et
(

1
0

)
,

joint vector: α2 = et
(

t
1

)
.

A general solution:(
y
x

)
= C1e

t

(
1
0

)
+ C2e

t

(
t
1

)
.
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A degenerated stable knot. Two eigenvectors

dy
dt = −y ,
dx
dt = −x .

∣∣∣∣ (−1− λ) 0
0 (−1− λ)

∣∣∣∣ = 0,

λ1 = −1, α1 = e−t
(

1
0

)
,

λ2 = −1, α2 = e−t
(

0
1

)
.

A general solution:(
y
x

)
= C1e

−t
(

1
0

)
+ C2e

−t
(

0
1

)
.
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A degenerated stable knot. Joint vector

dy
dt = −y − 5x ,

dx
dt = −x .

∣∣∣∣ (−1− λ) −5
0 (−1− λ)

∣∣∣∣ = 0,

λ1 = −1, α1 = et
(

1
0

)
,

joint vector: α2 = et
(

t
−1/5

)
.

A general solution:(
y
x

)
= C1e

−t
(

1
0

)
+ C2e

−t
(

t
−1/5

)
.
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A stable focus. <(λ1,2) < 0

dy
dt = y − 3x ,
dx
dt = y − 2x .

∣∣∣∣ (1− λ) −3
1 (−2− λ)

∣∣∣∣ = 0,

λ1 = −1 + i
√

3

2
, α1 = eλ1 t

(
1

3+i
√

3
6

)
,

λ2 =
−1 + i

√
3

2
, α2 = eλ2 t

(
1

3−i
√

3
6

)
.

A general solution:(
y
x

)
= C1e

λ1 t

(
1

3+i
√

3
6

)
+ C2e

λ2 t

(
1

3−i
√

3
6

)
.
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A real-valued solutions

Lemma

Suppose one get complex valued solution of a system with real
coefficients. Then the real part of the solution and imaginary part
of the solution are solutions of the system.

Proof.

Consider y = u(t) + iv(t), x(t) = p(t) + iq(t), where u, v , p, q are
real-valued functions. Substitute the formulas into the system of
equations and collect the real and imaginary parts.
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Example of real solution

(
y1

x1

)
= e−t/2<

((
cos

(√
3

2
t

)
− i sin

(√
3

2
t

))(
1

3+i
√

3
6

))
=

= e−t/2

 cos
(√

3
2 t
)

1
2 cos

(√
3

2 t
)

+
√

3
6 sin

(√
3

2 t
)  ,

(
y2

x2

)
= e−t/2=

((
cos

(√
3

2
t

)
− i sin

(√
3

2
t

))(
1

3+i
√

3
6

))
=

= e−t/2

 − sin
(√

3
2 t
)

1
2 sin

(√
3

2 t
)

+
√

3
6 cos

(√
3

2 t
)  .
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A general solution

(
y
x

)
= c1e

−t/2

 cos
(√

3
2 t
)

1
2 cos

(√
3

2 t
)

+
√

3
6 sin

(√
3

2 t
) +

c2e
−t/2

 − sin
(√

3
2 t
)

1
2 sin

(√
3

2 t
)

+
√

3
6 cos

(√
3

2 t
)  .

Here c1,2 ∈ R.
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An unstable focus. <(λ1,2) > 0

dy
dt = y − x ,
dx
dt = y + 1

2x .

∣∣∣∣ (1− λ) −1
1 ( 1

2 − λ)

∣∣∣∣ = 0,

λ1 =
3− i

√
15

4
, α1 = eλ1 t

(
1

1+i
√

15
4

)
,

λ2 =
3 + i

√
15

4
, α2 = eλ2 t

(
1

1−i
√

15
4

)
.

A general solution:(
y
x

)
= e3t/4

(
C1e

−i
√

15
4

t

(
1

1+i
√

15
4

)
+ C2e

i
√

15
4

t

(
1

1−i
√

15
4

))
.
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Center. <(λ1,2 = 0)

dy
dt = 2x ,
dx
dt = −y .

∣∣∣∣ (−λ) 2
−1 (−λ)

∣∣∣∣ = 0,

λ1 = −i
√

2, α1 = e−i
√

2 t

(
1
−i√

2

)
,

λ2 = i
√

2, α2 = e i
√

2 t

(
1
i√
2

)
.

A general solution:(
y
x

)
= a

(
cos(
√

2t)

− 1√
2

sin(
√

2t)

)
+ b

(
sin(
√

2t))
1√
2

cos(
√

2t)

)
.
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Center. Real-valued solution

(
y
x

)
= r

(
cos(
√

2t + φ)

− 1√
2

sin(
√

2t + φ)

)
,

r =
√
a2 + b2 > 0, φ = arctan

(
b

a

)
∈ [−π/2, π/2).

y2 + 2x2 = r2.
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Summary
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