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Solutions in form of series

A linear first-order example

Let’s consider a linear equation

u′ = u.

Suppose that there exists a solution as a convergent series:

u =
∞∑
n=0

unx
n,

Suppose that one can differentiate the series by terms and the
result is a convergent series for the derivative. Then:

∞∑
n=0

nunx
n−1 =

∞∑
n=0

unx
n,
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Solutions in form of series

A linear first-order example

Since the linearly independence of the set of polynomial xn

one can equate coefficients of xn. As a result one get:

un =
un−1
n

, un =
u0
n!
,

u(x) = u0

∞∑
n=0

xn

n!
,

u(x) = u0e
x .

Due to separability of the space of continuously differentiable
functions one can claim that the constructed solution is
unique.
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Solutions in form of series

A non-linear first-order example

u′ = u2, u =
∞∑
n=0

unx
n,

∞∑
n=0

nunx
n−1 =

(
∞∑
n=0

unx
n

)2

,

The right-hand side can be written though a convolution:(
∞∑
n=0

unx
n

)2

=
∞∑
n=0

(
n∑

k=0

ukun−k

)
xn.
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Solutions in form of series

A non-linear first-order example

∞∑
n=1

nunx
n−1 =

∞∑
n=0

(
n∑

k=0

ukun−k

)
xn.

A substitution allows to find coefficients of the series.

u1 = u2
0 ,

2u2 = u0u1 + u1u0, u2 = u0u1, u2 = u3
0 ;

3u3 = u0u2 + u2
1 + u2u0, u3 =

1

3
(2u0u2 + u2

1), u3 = u4
0 .
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Solutions in form of series

A non-linear first-order example

As a result one gets:

u(x) =
∞∑
n=0

un+1
0 xn,

If |x | < |u0|, then the series converges and

u(x) =
u0

1− u0x
.

However, we know the solution:

u(x) =
u0

1− u0x
, ∀x ∈ R.
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Solutions in form of series

Theoretical basements for constructing of the

solutions like a series are following:

I a convergent series for the solution;

I a change of the limits like a termwise (term by term)
differentiation of the series;

I a linear independence of the polynomials;

I a separability of the functional space.
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Solutions in form of series

Theorem about differentiation of the series

If a series is convergent uniformly to a function u(x) at [a, b]
and the term-by-term derivative of the series is convergent
uniformly, then the term-by-term differentiated series
converges to the derivative u′(x):

u′(x) =

(
∞∑
n=0

unx
n

)′
=
∞∑
n=1

n unx
n−1.
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Solutions in form of series

Idea of the proof of the theorem

Let’s consider an integral:

∫ x

a

(
N∑

n=1

n unξ
n−1 + ε

)
dξ =

N∑
n=1

∫ x

a

n unξ
n−1dξ + (x − a)ε =

N∑
n=1

unx
n −

N∑
n=1

una
n + (x − a)ε = u(x)− u(a) + ε.

Here

ε =

(
N∑

n=1

unx
n − u(x)

)
−

(
N∑

n=1

una
n − u(a)

)
+ (x − a)ε.

One can show as N →∞ ε→ 0 and hence ε→ 0.
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A counterexample for the term by term

differentiation

The following series converges at x = 1;

f (x) =
∞∑
n=1

(−1)n+1 x
n

n
,

but the term by term derivative of this series

f ′(x) =
∞∑
n=0

(−1)nxn

does not converge at x = 1.
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Solutions in form of series

A counterexample for the term by term

differentiation

However, the f (x) is the Taylor series for the function

f (x) = log(1 + x),

and the derivative exists at x = 1:

d

dx
log(1 + x) =

1

1 + x
|x=1 =

1

2
.
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Solutions in form of series

The linear independence of the polynomials

Let’s consider a set of the polynomials xn, n ∈ N.

N∑
n=0

αnx
n ≡ 0,

N∑
n=0

α2
n 6= 0, ∀x ∈ [a, b].
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Theorem about the separability of the differential

functions

The Weierstrass theorem

If a function f (x) is continuous on [a, b], then there exists a
sequence of polynomials {Pn(x)}∞n=0 which converges to f (x).
Another words:

∀ε > 0 ∃{Pn(x)}∞n=0, ∃N(ε), ∀n > N :

|f (x)− Pn(x)| < ε, x ∈ [a, b].

This means there exists a countable everywhere dense
sequence on the set of continuous functions. Then this set is
separable by the definition of the separable functional spaces.
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Solutions in form of series

A proof of the Weierstrass theorem

Without loss of generality let’s consider
f (x), x ∈ [0, 1], f (0) = f (1) = 0, f (x) 6= 0,∀x 6∈ (0, 1) and
a sequence of the polynomials

Qn(x) = qn(1− x2)n, n ∈ N,
∫ 1

−1
Qn(x)dx = 1,∫ 1

−1
(1− x2)ndx ≥ 2

∫ 1

0

(1− x2)ndx ≥ 2

∫ 1/
√
n

0

(1− x2)ndx ≥

2

∫ 1/
√
n

0

(1− nx2)dx =
4

3
√
n
≥ 1√

n
, qn <

√
n.

Let’s define

Pn(x) =

∫ 1

−1
f (x + ξ)Qn(ξ)dξ ≡

∫ 1

0

f (ζ)Qn(ζ − x)dζ, ζ = x + ξ.

First-order equations Theoretical basements Regular second-order equations Regular singularities



Solutions in form of series

A proof of the Weierstrass theorem

Note:

|f (x)− f (x + ξ)| < ε

2
, |ξ| < δ(ε), max |f (x)| = A,

|f (x)− Pn(x)| = |
∫ 1

−1
(f (x)− f (x + ξ))Qn(ξ))dξ| ≤∫ 1

−1
|f (x)− f (x + ξ)|Qn(ξ)dξ ≤∫ −δ

−1
|f (x)− f (x + ξ)|Qn(ξ))dξ +∫ δ

−δ
|f (x)− f (x + ξ)|Qn(ξ)dξ +∫ 1

δ

|f (x)− f (x + ξ)|Qn(ξ)dξ
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Solutions in form of series

A proof of the Weierstrass theorem

≤ ε

2
2δ(ε) + 4A

∫ 1

δ

Qn(ξ)dξ ≤
ε

2
+ 4A

√
n(1− δ2)n,

∀ε > 0, ∃N ,∀n > N : (1− δ2)n < ε
2
, then:

|f (x)− Pn(x)| < ε.
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Solutions in form of series

Benefits and imperfections

I A constructive procedure for building of the solution.

I A local usable formulas for solutions.

I A convergence for the linear equation does not depend on
an initial value.

I Convergence of the series depends on the initial data for
the non-linear equation.
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Solutions in form of series

An example

Let’s consider the same approach for a second order equation:

u′′ + u = 0,

Here the solution will construct in the series form:

u =
∞∑
n=0

unx
n.

Assume that second derivative can be obtained by termwide
differential of the series. Then one gets:

∞∑
n=0

(n + 1)(n + 2)un+2x
n +

∞∑
n=0

unx
n = 0,

First-order equations Theoretical basements Regular second-order equations Regular singularities



Solutions in form of series

An example

Due to the independence of the polynomials the equation is
equivalent to the sequence of the equalities:

un+2 = − un
(n + 1)(n + 2)

These equalities can be represented as follows:

u2n = (−1)n
u0

(2n)!
, u2n+1 = (−1)n

u1
(2n + 1)!

, n ∈ N.

Here u0 and u1 are parameters of the solution.
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Solutions in form of series

An example

As a result one gets:

u = u0

∞∑
n=0

(−1)n
x2n

(2n)!
+ u1

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
.

u(x) = u0 cos(x) + u1 sin(x).

So, we obtain the result by straightforward calculations.
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Solutions in form of series

A general case for the second-order equation

y ′′ + a(x)y ′ + b(x)y = 0,

a(x) =
∞∑
n=0

anx
n, b(x) =

∞∑
n=0

bnx
n.

Suppose there exists a solution in the form:

y(z) =
∞∑
n=0

ynx
n.

Substitute the the formula into the equation:

∞∑
n=2

n(n − 1)ynx
n−2 +

∞∑
n=0

anx
n
∞∑
n=1

nynx
n +

∞∑
n=0

bnx
n
∞∑
n=0

ynx
n = 0.
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Solutions in form of series

A general case for the second-order equation

As a result we get a sequence of equations for the coefficients
yn:

2y2 + a0y1 + b0y0 = 0,

y2 = −1

2
(a0y1 + b0y0),

6y3 + 2a0y2 + a1y1 + b0y1 + b1y0 = 0,

y3 = −1

6
(2a2y2 + a1y1 + b0y1 + b1y0),

. . . ,

(n + 1)(n + 2)yn+2 +
n∑

k=0

an−k(k + 1)yk+1 +
n∑

k=0

bn−kyk = 0.

yn+2 =
−1

(n + 1)(n + 2)

n∑
k=0

(an−k(k + 1)yk+1 + bn−kyk)
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Solutions in form of series

The Airy equation

y ′′ − xy = 0,

yn+2 =
yn−1

(n + 2)(n + 1)
⇒ yn+3 =

yn
(n + 3)(n + 2)

,

y3n = y0
1 · 4 · · · · · (3n − 2)

(3n)!
, y3n+1 = y1

2 · 5 · · · · · (3n − 1)

(3n + 1)!
,

y3n+2 = 0.

y(x) = y0

∞∑
n=1

1 · 4 · · · · · (3n − 2)

(3n)!
+

y1

∞∑
n=1

2 · 5 · · · · · (3n − 1)

(3n + 1)!
.
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Solutions in form of series

A power series for Bessel function

Let’s consider the Bessel equation

y ′′ +
1

x
y ′ +

(
1− ν2

x2

)
y = 0.

The equation has singularity at the origin and the previous
approach does not apply.
We assume that the solution can be expressed as a power
series of the form:

y(x) = xα
∞∑
n=0

anx
n

where an are the coefficients to be determined and α is a
constant exponent.
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Solutions in form of series

A power series for Bessel function

Differentiating y(x) with respect to x gives:

dy

dx
= αxα−1

∞∑
n=0

anx
n + xα

∞∑
n=0

nan−1x
n

d2y

dx2
= α(α− 1)xα−2

∞∑
n=0

anx
n + 2αxα−1

∞∑
n=0

nan−1x
n

+xα
∞∑
n=0

n(n − 1)an−2x
n.
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Solutions in form of series

A power series for Bessel function

Substitute the formulas into the Bessel equation:

α(α− 1)xα−2
∞∑
n=0

anx
n + 2αxα−1

∞∑
n=0

nan−1x
n

+xα
∞∑
n=0

n(n − 1)an−2x
n +

1

x

(
αxα−1

∞∑
n=0

anx
n + xα

∞∑
n=0

nan−1x
n

)
+

(
1− ν

x2

)
xα

∞∑
n=0

anx
n = 0
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Solutions in form of series

A power series for Bessel function

Gather terms of the same order wit respect to power of x :

x−2
(
α(α− 1) + α− ν2

) ∞∑
n=0

anx
n +

∞∑
n=0

n(n − 1)an−2x
n +

1

x

(
(2α + 1)

∞∑
n=0

nan−1x
n

)
+
∞∑
n=0

anx
n = 0.

Then
α2 − ν2 = 0⇒ α = ±ν.
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Solutions in form of series

A power series for Bessel function

As a result we obtain: and we obtain an equality:

∞∑
n=0

n(n − 1)an−2x
n +

1

x

(
(2ν + 1)

∞∑
n=0

nan−1x
n

)
+
∞∑
n=0

anx
n = 0.

Then

x−1(2α + 1)a1 = 0⇒ a1 = 0,

x0((2α + 1)2a2 + a0 + 2a2) = 0⇒ a2 =
a0

2α + 4
,

x1((2α + 1)3a3 + a1 + 2 · 3a3) = 0⇒ a3 =
a1

6α + 9
,

xn((2α + 1)(n + 2)an+2 + an + (n + 1) · (n + 2)an+2) = 0⇒

an+2 =
−an

(2α + 2 + n)(n + 2)
.
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Solutions in form of series

A power series for Bessel function

Then any odd coefficients equal zero. Then we might choose
n = 2k and the power series for solution of the the Bessel
equation has the form:

y(x) = Cxν
∞∑
k=0

(−1)k

k!

x2k

2ν · (2α + 2) . . . (2ν + 2 + 2k)
.
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Solutions in form of series

Regular singularities

Definition

If the equation has the form:

y ′′ +
a(x)

(x − x0)
y ′ +

b(x)

(x − x0)2
y = 0

and the functions a(x), b(x) have Taylor series at the point x0,
the point x0 is called regular singular point of the equation.
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Solutions in form of series

General rule for the regular singularity

The statement

In a neighborhood of the regular singularity point x0 a solution
of the differential equation can be represented in the form:

y(x) = xα
∞∑
n=0

(x − x0)nyn,

where α is a solution of the indicial equation:

α(α− 1) + a(x0)α + b(x0) = 0.
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