Solutions in form of series

O.M. Kiselev
0.kiselev@innopolis.ru

Innopolis university



http://smartmechanica.ddns.net/OK
http://innopolis.university

Outlines

Examples. First-order equations
Theoretical basements

Second-order equations with regular coefficients

Regular singularities




A linear first-order example

Let's consider a linear equation

u =u.

Suppose that there exists a solution as a convergent series:

Suppose that one can differentiate the series by terms and the
result is a convergent series for the derivative. Then:

o0

[o.¢]
E nu,,x”_lzg u,x",
n=0

n=0

First-order equations
[eleoleole)



A linear first-order example

Since the linearly independence of the set of polynomial x”
one can equate coefficients of x". As a result one get:

Un—1 __Uo
) un - b
n n!

o0 Xn
u(x) = ug Z L
n=0

u(x) = upe™.

u, =

Due to separability of the space of continuously differentiable
functions one can claim that the constructed solution is
unique.

First-order equations
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A non-linear first-order example

o0
v=uv u= Z upx",
n=0
oo oo 2
Z nu,x"1 = (Z u,,x”) ;
n=0 n=0

The right-hand side can be written though a convolution:

n=0

First-order equations
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A non-linear first-order example

o0 o n
g nupx"t = E Ugln—y | x".
k=0

n=1 n=0

A substitution allows to find coefficients of the series.

2

U1 — UO,
3.
2U2 = Ugly + uyplg, Uy = uply, Uy = Up;
_ 2 _ 2 _ A
Bus = upln + U + oy, us = —(2uotr + u7), Uz = Uj.

3

First-order equations
[elele] leol



A non-linear first-order example

As a result one gets:

oo

u(x) = ZUSHX”,

n=0

If |x| < |uol, then the series converges and

u
u(x) = S
1 — ugx
However, we know the solution:
u
u(x) = ° _ VxeR.
1 — upx

First-order equations
[loleoleole]



Theoretical basements for constructing of the
solutions like a series are following:

» a convergent series for the solution;

» a change of the limits like a termwise (term by term)
differentiation of the series;

» a linear independence of the polynomials;

» a separability of the functional space.

Theoretical basements
loleoleoleoleoleoleleolele]



Theorem about differentiation of the series

If a series is convergent uniformly to a function u(x) at [a, b]
and the term-by-term derivative of the series is convergent
uniformly, then the term-by-term differentiated series

converges to the derivative v/'(x):

o0 / [e.e]
u(x) = E ux"| = E nu,x"t.
n=1

n=0

Theoretical basements
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|dea of the proof of the theorem

Let's consider an integral:

/X (Znunf”l + 5) dé = Z/X nu,E"tdé + (x — a)e =
Z upx" — Z upd" + (x —a)e = u(x) — u(a) +e.

Here

€= (Z upx" — u(x)> - <Z upa" — u(a)) + (x — a)e.

One can show as N — oo € — 0 and hence ¢ — 0.




A counterexample for the term by term
differentiation

The following series converges at x = 1,

o0

) = 3 (-1

n=1

but the term by term derivative of this series

n=0

does not converge at x = 1.

Theoretical basements
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A counterexample for the term by term
differentiation

However, the f(x) is the Taylor series for the function
f(x) = log(1 + x),

and the derivative exists at x = 1:

1 1
1+ x

CZ( log(1+ x) =

’x:l - A
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The linear independence of the polynomials

Let's consider a set of the polynomials x”, n € N.

N N

0, Zai #0, Vxe€]la, b

n=0 n=0

(]
£
><3
i




Theorem about the separability of the differential
functions

The Weierstrass theorem

If a function f(x) is continuous on [a, b], then there exists a
sequence of polynomials {P,(x)}5°, which converges to f(x).
Another words:

Ve > 0 3{P,(x)}2, IN(€),¥Yn > N :
|f(x) — Po(x)| <€, x € |[a,b].

This means there exists a countable everywhere dense
sequence on the set of continuous functions. Then this set is
separable by the definition of the separable functional spaces.




A proof of the Weierstrass theorem

Without loss of generality let's consider
f(x), x €[0,1], f(0) =f(1) =0, f(x)#0,¥x & (0,1) and
a sequence of the polynomials

1
Qu(x) = gu(1 — 53)", nEN, / Qu(x)dx = 1,
1 1 1/\;1
/ (1 —x*)"dx > 2/ (1 —x*)"dx > 2/ (1 —x*)"dx >
_ 0 0

1

1/vn 4 1
2/ (1—nPdx=—=>-"=, q,<n
0

3v/n n

Let's define

P = [ 16 0@u@)d = [ 1OGUC—x)ac (=x-+6

Theoretical basements




A proof of the Weierstrass theorem

Note:
£(x) = Flx+ )| < 5, €] < (e). max|f(x)] = A,

r—|/ X) = Flx+ ) Q)] <
160 -t + Ol <
[ 16— f Qe+

[ 1760 =+ 1@ +

/5 F(x) — F(x + )| Qu(€)de




A proof of the Weierstrass theorem

1
< 52(5(6) +4A/6 Qn(£)d€ <
% +4AV/n(1 - 6%)",

Ve >0, IN,Vn > N: (1 —46%)" < g, then:

[f(x) — Pa(x)| < e.

Theoretical basements
......... (o)



Benefits and imperfections

» A constructive procedure for building of the solution.
» A local usable formulas for solutions.

» A convergence for the linear equation does not depend on
an initial value.

» Convergence of the series depends on the initial data for
the non-linear equation.

Theoretical basements
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An example
Let’s consider the same approach for a second order equation:
' +u=0,

Here the solution will construct in the series form:
oo
u= E upx".
n=0

Assume that second derivative can be obtained by termwide
differential of the series. Then one gets:

Z(n + 1)(n+ 2)upi2x" + Z upx" =0,
n=0 n=0

Regular second-order equations
[eleleolele]



An example

Due to the independence of the polynomials the equation is
equivalent to the sequence of the equalities:

up
2 = T ) (n 1 2)

These equalities can be represented as follows:

Up th

Uppy = (—1)"(2”)!7 Uopy1 = (—1)”m7 n e N.

Here uy and u; are parameters of the solution.

Regular second-order equations
o] leolelele)]



An example

As a result one gets:

o0
X2n+1

u—uoz —|—u1n§_:o( 1)”m.
u(x) = ug cos(x) + uy sin(x).

So, we obtain the result by straightforward calculations.

Regular second-order equations
lo]le] lelele)



A general case for the second-order equation

y" 4+ a(x)y’ + b(x)y =0,
a(x) = Z ax",  b(x) = Z bnx".
n=0 n=0

Suppose there exists a solution in the form:

YD) =Sy
n=0

Substitute the the formula into the equation:

N n(n —1)y,x"2 + i anx" i ny,x" + i b,x" iynx” =0.
n=0 n=1 n=0 n=0

n=2

Regular second-order equations
loleole] lele)



A general case for the second-order equation

As a result we get a sequence of equations for the coefficients
Yn'
2y» + aoyr + boyo = 0,
Yo = —;(30)/1 + boyo),
6ys + 2a0y2 + a1y1 + boyr + biyo = 0,

1
3= *6(232)/2 + a1y1 + boyr + biyo),

ey

(n+1)(n+ 2)yns2 + Z an—k(k + 1)yk1 + Z bn—kyk = 0.

k=0 k=0
-1 n
4y = —————————— an_klk+1 + b,_
Yn+42 (n i 1)(n I 2) kz_o( k( ))/k+1 k}/k)

Regular second-order equations
lololele]l leo)



The Airy equation

y'—xy =0,

o Yn—l o Yn
y"+2_(n—|—2)(n+1):>y"+3_(n+3)(n+2)’
 1-4-----(3n-2) . 2.5.....(3n-1)
Yan = Yo (3n)! RS G T TR
Y3n+2 = 0.

1-4. 3n—2
)/oz )+




A power series for Bessel function

Let's consider the Bessel equation
1 V2
y'+ =y + <1—2>y—0.
X X

The equation has singularity at the origin and the previous
approach does not apply.

We assume that the solution can be expressed as a power
series of the form:

y(x) = x* i apx"
n=0

where a, are the coefficients to be determined and « is a
constant exponent.

Regular singularities




A power series for Bessel function

Differentiating y(x) with respect to x gives:

(e.) o
dy a—1 n o n
d— = X E anX + X E na,_1x
X n=0 n=0
d?y

o o
i afa —1)x*2 E apx" + 2ax*1 E na,_1x"
n=0 n=0

+x“ Z n(n—1)a,_ox".
n=0




A power series for Bessel function

Substitute the formulas into the Bessel equation:

o0 o0
afa —1)x*2 E apx" + 2ax®71 E nap_1x"
n=0 n=0

+x Z n(n—1)a, »x" +
n=0

1 o0 (o]
- &x“’lg anx”—l—xag na,_1x" | +
X

n=0 n=0




A power series for Bessel function

Gather terms of the same order wit respect to power of x:

x?(a(a—1)+a—1?) Z anx" + Z n(n—1)a, »x" +

n=0 n=0

)1< ((20 +1) io: ”aann) + i_o; a,x" = 0.

n=0

Then




A power series for Bessel function

As a result we obtain: and we obtain an equality:

i n(n—1)a,_ox" + )1( <(2u +1) i na,,lx"> + i ax"=0.
n=0

n=0 n=0
Then
x'2a+1)a; =0= a; =0,
=]
xX°((2a +1)2a, + ag +2a) = 0 = a, = o 3_ 7
Xl((2&+1)333+31 +2-3a3) =0= dz = 6Oz1+97
X"((Qae+1)(n+2)ani2 +an+ (n+1)- (n+2)ap) =0=

_an
dpan = .
2T 2a+2+n)(n+2)

Regular singularities




A power series for Bessel function

Then any odd coefficients equal zero. Then we might choose
n = 2k and the power series for solution of the the Bessel
equation has the form:

( )_C Vio:(_l)k X2k
T T 2 (20 v 2). (vt 2+ 2k)

Regular singularities




Regular singularities

Definition
If the equation has the form:

(xafxio)y o+ (xb—()zzo)ﬂ =0

y// +

and the functions a(x), b(x) have Taylor series at the point xg,
the point xq is called regular singular point of the equation.

Regular singularities




General rule for the regular singularity

The statement

In a neighborhood of the regular singularity point xg a solution
of the differential equation can be represented in the form:

o0

y() = xS (x = x0)"yi:

n=0

where « is a solution of the indicial equation:

ala—1)+ a(x)a + b(xg) = 0.

Regular singularities
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