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Exact equations.

Theorem about existence and uniqueness solution

Theorem
Let f (x , y) be continuous with respect to x , y and be such
that:

|f (x , y)| < b, U : Xl < x < Xr , Yl < y < Yu.

|f (x , y)− f (x , z)| < C |y − z |, (x , y) ∈ U ,

then there exists unique solution of the following initial valued
problem

dy

dx
= f (x , y), y |x=x0 = y0

in some interval x ∈ (x0, c) ⊂ (Xl ,Xr ).
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Exact equations.

Trajectories of dy
dx = y(1− y) do not intersect!
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Counterexample
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dy

dx
=
√
y , 2

√
y = x + c ,

y =
1

4
(x + c)2.

The general solution at
x = −c tangents to a special solution y ≡ 0. So the right
hand side of the equation, which is

√
y , cannot be represented

as smooth function at y = 0.

|√y −
√
z | < C

2
√
y
|y − z |.
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A direction field for dy
dx = 1− 2sign(y).
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Generalization of the theorem

Lets consider a n-th order differential equation:

dny

dxn
= f (x , y , y ′, y ′′, . . . , y (n−1)), where y (k) =

dky

dxk
.

Define ~Y = (Y1, . . . ,Yn) ≡ (y , y ′, . . . , y (n−1)), then the
equation can be presented as a system of n first-order
equations:

dY1

dx
= Y2, . . . ,

dYn−1

dx
= Yn,

dYn

dx
= f (x , ~Y ).
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Examples
Let’s consider the second order equations:

y ′′ + y = f (x), Y1 = y ,Y2 = y ′,⇒
{

Y ′1 = Y2,
Y ′2 = −Y1 + f (x).

φ′′+sin(φ) = f (x), Y1 = φ,Y2 = φ′,⇒
{

Y ′1 = Y2,
Y ′2 = − sin(Y1) + f (x).

A general case: 
Y ′1 = f1(x ,Y1, . . . ,Yn),

. . . ,
Y ′n = fn(x ,Y1, . . . ,Yn).
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Example

Let’s define the norm of the functional vector space:

|| ~Y || = max
k∈{1,...,n}

sup
x∈(Xl ,Xr )

|yk(x)|.

Let’s find, for example, a value of this norm for a certain
two-dimensional vector-function, say: ~V = (V1(t),V2(t)),
where V1(x) = 1 + x2,V2 = x sin(x) and x ∈ (0, π/2):

|| ~V || = max
k∈{1,2}

sup
x∈(0,π/2)

{1 + x2, x sin(x)}

= max{1 + π2

4
,
π

2
sin(π/2)} = 1 +

π2

4
.
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Theorem for the system of first-order equations

Let ~f (x , ~y) be continuous with respect to x , y1, . . . , yn and be
such that:

|f (x , ~y)| < b, forU : Xl < x < Xr ,Ak < yk < Bk , k ∈ {1, . . . , n}
||~f (x , ~y)− f (x , ~z)|| < C ||~y − ~z ||, (x , ~y) and (x , ~z) ∈ U ,

then there exists unique solution of the following initial valued
problem

d~y

dx
= ~f (x , ~y), ~y |x=x0 = ~y0

in some interval x ∈ (x0, c) ⊂ (Xl ,Xr ).
The proof of the theorem is literally the same as for the
one-dimensional first-order equation, which was considered on
the previous lecture.
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Formulas with a constant value of a parameter
In physics the equations in the specific form like:

mẏ 2

2
+ k

y 2

2
= E

This function define the full mechanic energy of a load mass m
on a spring, where k is a spring constant. The first term
defines a kinetic energy and the second one – a potential
energy of the spring.
Another formula of the same type for the full energy of a
pendulum:

ml2φ̇2

2
− lgm cos(φ) = E

Here m is a mass of the pendulum and l is its length, g is the
gravitational acceleration.
The general form for these cases is

F (y , t) = C , C = const .Existence Exact equations Linear first-order equations Bernoulli equations
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Initial data as a parameter of a solution

According to the theorem about existence of a unique solution
for a given initial valued problem, the solution can be written
as an function of one external parameter. In general case the
solution can be written as follows:

y = y(x ,C ), where C ≡ C (y0, x0).

This parameter defines the integral curve as a trajectory on
the vector field for the given first-order differential equation.
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Exact equations
Let’s try rewrite the function y = y(x ,C ) in the implicit form:
F (x , y) = C . The differential of the function F (x , y):

dF (x , y) ≡ ∂F

∂y
dy +

∂F

∂x
dx = 0.

Definition: exact equation

An equation
∂F

∂y
dy +

∂F

∂x
dx = 0.

which can be represented as

dF (x , y) = 0

is called exact equation.
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Properties of the exact solution

Theorem
If coefficients of the equation

A(x , y)dy + B(x , y)dx = 0

are such that their partial derivative exist and

∂A(x , y)

∂x
≡ ∂B(x , y)

∂y
,

then the differential equation is the exact equation.
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Properties of the exact solution

Another words we can find the function F (x , y) such that:

A(x , y) =
∂F (x , y)

∂y
, B(x , y) =

∂F (x , y)

∂x
,

and the equation can be considered as the differential of the
function F (x , y):

dF (x , y) = 0.
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Proof of the theorem about an exact equation

I Suppose that there exists such double differentiable
function F , then dF (x , y) = 0 can be rewritten as follows

dF (x , y) ≡ ∂F

∂y
dy +

∂F

∂x
dx = 0.

Define A(x , y) = ∂F
∂y
, B(x , y) = ∂F

∂x
, then we obtain:

A(x , y)dy + B(x , y)dx = 0

and due to existence of the double derivatives of F (x , y)

∂A

∂x
≡ ∂2F

∂x∂y
,

∂B

∂y
≡ ∂2F

∂y∂x
,

∂2F

∂x∂y
≡ ∂2F

∂y∂x
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Proof of the theorem about an exact equation
I Let’s suppose

A =
∂F

∂y
, B =

∂F

∂x
.

Then

F =

∫ y

y0

A(x , y)dy + f1(x), F =

∫ x

x0

B(x , y)dx + f2(y).

Using the condition of the theorem we get

F (x , y) ≡
∫ y

y0

A(x , y)dy + f1(x) + const,

or the same case:

F (x , y) ≡
∫ x

x0

B(x , y)dx + f2(y) + const,
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Examples

I The equation for the circles, defined by the formula
y 2 + x2 = R2 is following:

2ydy + 2xdx = 0,⇒ ydy + xdx = 0.

I The equation for the family of hyperbolas:
y 2 − x2 = const . The differential equation for these
curves is:

2ydy − 2xdx = 0,⇒ ydy − xdx = 0.
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Theorem about existence of integrating factor

The corollary of the theorem of existence of unique solution
for initial valued problem can be formulated as follows.

Theorem about existence of integrating factor

For any equation in the differential form

A(x , y)dx + B(x , y)dy = 0

there exists an multiplier µ(x , y) such that the equation

µ(x , y)A(x , y)dx + µ(x , y)B(x , y)dy = 0

is the exact equation.

Existence Exact equations Linear first-order equations Bernoulli equations



Exact equations.

Example of usage the integrating factor
The equation

x2y 2dy + (xy 3 − 1)dx = 0

is not exact equation because

d

dx
(x2y 2) 6= d

dy
(xy 3 − 1).

The integrating factor is µ(x , y) ≡ x :

d

dx
(x3y 2) = 3x2y 2,

d

dy
(x2y 3 − 1) = 3x2y 2.

Then the equation

x(x2y 2dy + (xy 3 − 1)dx) = 0

is the exact equation.
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Notice

Deriving an integrating factor for a general equation is a
challenging problem.
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Linear homogeneous first-order equations
A homogeneous first-order linear differential equation is a
differential equation in the form:

y ′ + P(x)y = 0.

where P(x) is a known function. The term "linear"means that
the equation can be expressed in terms of first-order
derivatives only, and does not involve any products or powers
of the unknown function y :
Let’s λ = const and define new function λy(x) = ỹ(x), then
the substitution this function into the equation instead of y(x)
produces the same equation for y(x):

ỹ ′ + P(x)ỹ = 0⇒ λy ′ + P(x)λy = 0,⇒ λ(y ′ + P(x)y) = 0.
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Examples of non-homogeneous equations

The differential equation in the form:

y ′ = y 2, λy → ỹ ,⇒ ỹ ′ = ỹ ,⇒
λy ′ = λ2y 2,⇒ y ′ = λy 2.

Yet an another example:

y ′ = sin(y), λy → ỹ ,⇒ ỹ ′ = sin(ỹ),⇒

λy ′ = sin(λy),⇒ y ′ =
1

λ
sin(λy).
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Integration of homogeneous linear equations
Consider the first-order linear differential equation:

y ′(x) + f (x)y(x) = 0

we can solve for y(x) using the method of separation of
variables.
First, we multiply both sides of the equation by dx and divide
both sides by y to get:

dy(x)

y
+ f (x)dx = 0.

Integrating both sides with respect to x , we obtain:

log |y | − log |C | = −
∫

f (x)dx ,

which implies that:

y = Ce−
∫
f (x)dx

here C is an arbitrary constant.
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Integration of non-homogeneous linear equations
To solve non-homogeneous first-order linear differential
equations of the form:

y ′(x) + f (x)y(x) = Q(x)

where P(x) and Q(x) are known functions. To solve this
equation, we first find the general solution u(x) to the
corresponding homogeneous equation:

u′(x) + f (x)u(x) = 0.

Suppose one knows a certain solution of the non-homogeneous
equation h(x):

h′ + f (x)h = Q(x),

then the general solution of the non-homogeneous equation is:

y(x) = Cu(x) + h(x), ∀C ∈ R.
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Method of variable of parameter.

To find a certain solution of the non-homogeneous equation
let’s try to consider h(x) = C (x)u(x), where u(x) is a solution
of the complement homogeneous equation and C (x) is new
unknown function.
Substitute the form h(x) into the non-homogeneous equation.
It yields:

C ′u+Cu′+f (x)Cu = Q,⇒ C ′u+C (u′+f (x)u) = Q,⇒ C ′u = Q(x).

Then

C ′ =
Q(x)

u(x)
,⇒ dC =

Q(x)

u(x)
dx ,⇒ C =

∫ x

x0

Q(t)

u(t)
dt.

Then a particular solution is: h(x) = u(x)
∫ x

x0

Q(t)
u(t)

dt.
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Theorem about solution of a non-homogeneous
linear first-order equation

Theorem
A general solution of the first-order non-homogeneous
equation for y ′ + f (x) = Q(x) can be written in the form:

y(x) = Cu(x) + u(x)

∫ x

x0

Q(t)

u(t)
dt,

where u(x) is a solution of the complementary homogeneous
equation u′ + f (x)u = 0 and x0 is some constant.
To proof this theorem one should differentiate the function
y(x) with respect to x .
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An example

y ′ + y = x2 + x .

The solution of the complementary linear homogeneous
equation:

v ′ + v = 0, v = Ce−x .

A particular solution of the given non-homogeneous equation
is follows:

h(x) = e−x
∫ x

0

(t2 + t)etdt = e−x((x2 − x + 1)ex − 1)

= (x2 − x + 1)− e−x .

Then the general solution can be written as follows:

y = Ce−x + (x2 − x + 1).
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The Bernoulli equations
Equations in the following form

y ′ + f (x)y = Q(x)yn, n 6= 1

are called as Bernoulli equations in the honor of Jacob
Bernoulli.
These equations can be rewritten as linear ones after dividing
both part by yn

y ′

yn
+

f (x)

yn−1 = Q(x)

and changing v = y 1−n, v ′ = (1− n) y
′

yn . As a result one gets
a non-homogeneous linear equation of the first-order for v(x):

v ′

(1− n)
+ f (x)v = Q(x),⇒ v ′+ (1− n)f (x)v = (1− n)Q(x).
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An example

y ′ + xy = y 3.

Divide both parts by y 3,then we get:

y ′

y 3
+

x

y 2
= 1.

Define v = y−2, then v ′ = −2y−3 and

v ′

−2
+ xv = 1,⇒ v ′ − 2xv = −2.

As a result we have derived the non-homogeneous linear
first-order equation, which solution can be constructed by the
approach discussed above.
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Summary

Theorem about existence of unique solution and corollaries

Exact equations

Linear first-order equations

Bernoulli equations
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