The existence and uniqueness of solution of first order DE

O.M. Kiselev o.kiselev@innopolis.ru

Innopolis university

The existence and uniqueness of solution of first order DE

Special form of first order equations

Theorem of existence of solution

Integrating of the separable equations

Explicit and implicit forms of equations

We will say that a first order equation is written in *explicit* form if the first derivative looks as an explicit function of dependent, say y, and independent, say x, variables:

$$\frac{dy}{dx} = f(x, y).$$

The same equation can be represented as

$$\frac{dx}{dy} = \phi(x, y), \quad \phi(x, y) = \frac{1}{f(x, y)}.$$

The equation is written in an implicit form if it looks like

$$F\left(x, y, \frac{dy}{dx}\right) = 0$$
, or $\Phi\left(x, y, \frac{dx}{dy}\right) = 0$.

Examples of equations in explicit and implicit forms

Equations in explicit forms:

$$\frac{dy}{dx} = \frac{x}{y} \Leftrightarrow \frac{dx}{dy} = \frac{y}{x}$$

An equation in implicit forms:

$$\frac{1}{2}\left(\frac{dy}{dx}\right)^2 + \frac{1}{2}y^2 - 1 = 0 \Leftrightarrow \left(\frac{dx}{dy}\right)^2 + \frac{1}{y^2 - 2} = 0$$

The equation in the implicit and explicit forms

$$\frac{1}{2}\left(\frac{dy}{dx}\right)^2 + \frac{1}{2}y^2 - 1 = 0 \Leftrightarrow \frac{dy}{dx} = \begin{cases} \sqrt{2 - y^2}, \\ -\sqrt{2 - y^2}. \end{cases}$$

00000

A pendulum

A mechanical energy of the pendulum:

$$E = m\frac{(I\dot{\phi})^2}{2} - mgl\cos(\phi).$$

This formula can be considered as an implicit form of differential equation for the instant position of the pendulum, which is defined by the angle ϕ .

$$\dot{\phi} = \pm \sqrt{2E + \frac{g}{I}\cos(\phi)} \Leftrightarrow \frac{d\phi}{dt} = \pm \sqrt{2E + \frac{g}{I}\cos(\phi)}.$$

A differential form of the equation

A differential of function change is a linear part of the additional value of the function:

$$dy = \frac{dy}{dx}dx.$$

So the differential equation for some function *y* we can write as an *equation in the differentials*:

$$dy - f(x, y)dx = 0$$
, $dx - \phi(x, y)dy = 0$.

A general form of equation in differentials looks like:

$$h(x,y)dy + g(x,y)dx = 0.$$

00000

A parametric form

Th forth form of the same equation we can derive from assumption for the parametric form of the solution:

$$y = y(t), \quad x = x(t), \quad t \in \mathbb{R}.$$

In this case

$$dx = \frac{dx}{dt}dt$$
, $dy = \frac{dy}{dt}$.

Then the equation can be represented as

$$\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g(x,y)}{h(x,y)}.$$

So we can write the equation as a system of differential equation as a parametric definition of the integral curve:

$$\frac{dx}{dt} = h(x, y), \quad \frac{dy}{dt} = g(x, y).$$

Example:
$$\frac{dy}{dx} = ky$$
.

Let's integrate left part of the equation over x:

$$\int \frac{dy}{dx} dx \equiv \int dy.$$

The same gimmick does not work with the right hand side:

$$\int y dx \equiv \int y(x) dx$$

because the integrand contains unknown function y(x).

The solution in a series form

Consider the initial value problem

$$\frac{dy}{dx} = y, \quad y_{x=0} = y_0.$$

It is easy to check the solution of the integral equation like

$$y = y_0 + \int_0^x y(\xi) d\xi$$

gives the solution of this initial valued problem. Let's differentiate the integral equation:

$$\frac{dy}{dx} = \frac{d}{dx} \left(A + \int_0^x y(\xi) d\xi \right) \equiv y(x).$$

An equivalence of initial value problem for differential and integral equation

As a result we obtain the statement:

The solution of the integral equation

$$y = y_0 + \int_0^x y(\xi) d\xi$$

coincides to the initial value problem for the differential equation:

$$\frac{dy}{dx} = y, \quad y|_{x=0} = y_0.$$

Constructing the series

Define a recurrent sequence:

$$y_{n+1}(x) = y_0 + \int_0^x y_n(\xi) d\xi$$

A a result we obtain:

$$y_{1} = y_{0} + y_{0}x,$$

$$y_{2} = y_{0} + y_{0}x + y_{0}\frac{x^{2}}{2},$$

$$y_{3} = y_{0} + y_{0}x + y_{0}\frac{x^{2}}{2} + y_{0}\frac{x^{3}}{3!},$$

$$y_{n+1} = y_{n}(x) + y_{0}\frac{x^{n+1}}{(n+1)!},$$

$$y(x) = y_{0}\left(1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!} + \dots\right) \Leftrightarrow y(x) = y_{0}e^{x}.$$

A general approach

Consider an initial value problem:

$$\frac{dy}{dx} = f(x, y), \quad y|_{x=x_0} = y_0.$$

Connect an integral equation with the problem:

$$y(x) = y_0 + \int_{x_0}^{x} f(\xi, y(\xi)) d\xi.$$

It easy to check by straightforward differentiation that the integral equation and initial value problem define the same function if such function exists.

A recurrent process. Integral operator.

Define a recurrent sequence on some interval $x \in (0, a)$:

$$y_{n+1} = y_0 + \int_{x_0}^{x} f(\xi, y_n(\xi)) d\xi.$$

On this step we need to assume that the integrand is bounded in area on plane (x, y), for simplicity in some rectangle:

$$|f(x,y)| < b$$
, $X_l < x < X_r$, $Y_l < y < Y_u$.

Therefore y_k remains in the interval $Y_l < y < Y_u$ as $Y_l - y_0 < b|x - x_0| < Y_u - y_0$. This inequalities defines the interval of x which can be used for the recurrent sequence.

A functional space and metrics

We will say that two function are equivalent on $x \in (a, b)$ if

$$\sup_{x\in(a,b)}|y(x)-z(x)|=0.$$

The *functional* which connect a function y(x) and a number in \mathbb{R} :

$$L(y(x)) := ||y(x)||$$

such that

- ► $||y(x)|| \ge 0$.
- ► If ||y(x)|| = 0, then $y(x) \equiv 0$.
- $||y(x)-z(x)|| \leq ||y(x)-u(x)|| + ||u(x)-z(x)||.$

will be named a norm or metrics.

A pointwise norm

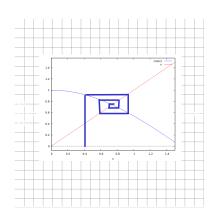
The functional

$$||y(x)|| = \sup_{x \in (a,b)} |y(x)|$$

defines a *pointwise* norm. We will consider continuous and bounded functions. The space of such functions we will mark C and $y(x) \in C$.

This approach expands concept of distance on the the functional space.

A fixed point of contracting map



Below we will consider the formula

$$y_{n+1} = y_0 + \int_{x_0}^{x} f(\xi, y_n(\xi)) d\xi.$$

as a constructing map in the functional space. Analogously to the map like follows:

$$x = \phi(x)$$

in the real numbers, but instead of the point $x \in \mathbb{R}$ we consider the point in the functional space: $y(x) \in C$.

A recurrent process. An estimation of the difference.

Estimate a difference between y_{n+1} and y_n as follows:

$$\sup_{x \in (0,a)} |y_{n+1}(x) - y_n(x)| =$$

$$\sup_{x \in (0,a)} \left| \int_{x_0}^x f(\xi, y_n(\xi)) d\xi - \int_{x_0}^x f(\xi, y_{n-1}(\xi)) d\xi \right|.$$

To get the estimate for the difference we need additional constraint for the smooth of f(x, y):

$$|f(x,y) - f(x,z)| \le C|y-z|, C > 0,$$

as $X_l < x < X_r, Y_l < y < Y_u.$

An example

$$f(x,y)\equiv y^2.$$

Then:

$$f(y) - f(z) = y^2 - z^2 = (y + z)(y - z).$$

Hence

$$|y^2 - z^2| \le |y + z| \cdot |y - z|, \quad |y + z| < L = \text{const}, \quad y, z \in (a, b).$$

So:

$$|y^2 - z^2| \le L \cdot |y - z|, \quad y, z \in (a, b).$$

A recurrent process. A convergent sequence.

Define *G* interval *x* such that both inequalities are true:

$$C|x-x_0| < 1, Y_1 - y_0 < b|x-x_0| < Y_u - y_0.$$

$$\sup_{x \in G} |y_{n+1}(x) - y_n(x)| =$$

$$\sup_{x \in G} \left| \int_{x_0}^x f(\xi, y_n(\xi)) d\xi - \int_{x_0}^x f(\xi, y_{n-1}(\xi)) d\xi \right| \le$$

$$C|x - x_0| \sup_{x \in G} |y_n(x) - y_{n-1}(x)| =$$

$$q \sup_{x \in G} |y_n(x) - y_{n-1}(x)|, \quad 0 < q < 1.$$

As a result we get:

$$\sup_{x \in G} |y_{n+1}(x) - y_n(x)| < q \sup_{x \in G} |y_n(x) - y_{n-1}(x)|, \quad 0 < q < 1.$$

This means the sequence is convergent.

A recurrent process. A uniqueness of the solution.

Let's suppose there exist two different solutions Y(x) and Z(x), then:

$$\sup_{x \in G} |Y(x) - Z(x)| < q \sup_{x \in G} |Y(x) - Z(x)|, \quad 0 < q < 1.$$

Hence $\sup_{x \in G} |Y(x) - Z(x)| = 0$ and there is unique solution of the integral equation.

Corollary

The recurrent process converges to the unique solution of the integral equation.

Theorem about existence and uniqueness solution

Theorem

Let f(x, y) be continuous with respect to x, y and be such that:

$$|f(x,y)| < b$$
, $U: X_l < x < X_r$, $Y_l < y < Y_u$.
 $|f(x,y) - f(x,z)| < C|y-z|, (x,y) \in U$,

then there exists unique solution in some interval $x \in (x_0, c)$.

Counterexample

$$\frac{dy}{dx} = \sqrt{y}, \quad 2\sqrt{y} = x + c, \quad y = \frac{1}{4}(x + c)^{2}.$$

The general solution at x=-c tangents to a special solution $y\equiv 0$. So the right hand side of the equation, which is \sqrt{y} is cannot be represented as smooth function as $y\sim 0$.

$$|\sqrt{y} - \sqrt{z}| < \frac{C}{2\sqrt{y}}|y - z|.$$

Integration by separation $\frac{dy}{dx} = ky$

The main idea of variable separation

Rewrite, if it is possible, the equation in such way that integrand be written in explicit form.

If y = 0 then $y \equiv 0$ is the trivial solution.

$$\frac{dy}{dx} = ky, y \neq 0 \Leftrightarrow \frac{1}{y} \frac{dy}{dx} = k.$$

$$\int \frac{dy}{y} = \int kdx,$$

It yields:

$$\log(|y|) = kx + c,$$

Define $c = \log(|C|)$, then

$$\log(|y|) = kx + \log(|C|) \Leftrightarrow y = C e^{kx}$$
.

Integration of initial value problem

Consider the initial value problem:

$$\frac{dy}{dx} = ky, \quad y|_{x=x_0} = y_0, \quad y_0 \neq 0.$$

In this case the antiderivatives should be changed by definite integrals:

$$\int_{y_0}^{y} \frac{dy}{y} = \int_{x_0}^{x} k dx.$$

It yields:

$$\log(|y|) - \log(|y_0|) = e^{k(x - x_0)}.$$

The same formula can be represented as follows:

$$y = y_0 e^{k(x-x_0)} \Leftrightarrow y = A e^{kx}, \quad A = y_0 e^{-kx_0}.$$

Separated equation in general form

Consider the equation in the form:

$$\frac{dy}{dx} = g(x)h(y).$$

All straight lines $y \equiv y_k$, for $h(y_k) = 0$ are constant solutions of the equation.

Example

$$\frac{dy}{dx} = g(x)(y+1)(y^2-3), \quad y \equiv 1, \quad y \equiv \sqrt{3}, \quad y \equiv -\sqrt{3}.$$

Separated equation in general form

Consider interval of bounded and nonzero values of the right-hand side for the equation

$$\frac{dy}{dx} = g(x)h(y).$$

- ▶ Rewrite the equation in the form: $\frac{1}{h(y)} \frac{dy}{dx} = g(x)$.
- ▶ Integrate both part over x: $\int \frac{dy}{h(y)} = \int g(x)dx$.
- ▶ In case of initial valued problem $y|_{x=x_0} = y_0$ the answer should be presented in the form

$$\int_{y_0}^{y} \frac{dy}{h(y)} = \int_{x_0}^{x} g(x) dx.$$

The two last forms can be considered as the solution in quadrature.

An example. Equation for the circle

Let's consider the equation

$$\frac{dy}{dx} = -\frac{x}{y}.$$

This form of the equation assumes that on the axis y = 0 this equation couldn't be considered. However we might rewrite this equation in the following form:

$$\frac{dx}{dy} = -\frac{y}{x}.$$

This form of the equation highlights that there do not solutions as x = 0.

But in reality these restrictions only explain that the derivatives in the left-hind sides might be infinite at x=0 or y=0. However while $x \neq 0$ nor $y \neq 0$ the solutions of these equations coincides.

Equation for the circle

Let's consider an equation in differential form:

$$xdx + ydy = 0$$
, or $xdx = -ydy$

integrate both parts:

$$\int x dx = -\int y dy, \quad \frac{x^2}{2} = -\frac{y^2}{2} + C$$

As a result we obtain:

$$\frac{x^2}{2} + \frac{y^2}{2} = C.$$

Here C > 0 and the integral curve is a circle with radius $r = \sqrt{C}$ and $2C = x_0^2 + y_0^2$ for given initial values of x and y.

Example: a logistic equation $\frac{dy}{dx} = y(1-y)$

- ▶ Two constant solutions $y \equiv 0$ and $y \equiv 1$.
- ► A general solution in quadrature form:

$$\int \frac{dy}{y(1-y)} = \int dx$$

Integral in the left-hand side can be represented as follows:

$$\int \frac{dy}{y(1-y)} = \int \frac{dy}{y} + \int \frac{dy}{1-y}$$
$$= \log(|y|) - \log(|1-y|) = \log\left(\left|\frac{y}{1-y}\right|\right)$$

Solution of the logistic equation



So,

$$\frac{y}{1-y}=ce^{x},\quad y(x)=\frac{ce^{x}}{1+ce^{x}}.$$

In more convenient form a general solution of the logistic equation has the form:

$$y(x) = \frac{1}{1 + Ce^{-x}},$$

where C = 1/c.

Summary

- ► A variety of formulae for the first order differential equations.
- ► A norm in a functional space.
- ► Theorem about existence and uniquince of solution of the first order differential equation.
- Separated equations.
- ► An example. A general solution of the logistic equation.