Short introduction into Differential equations

O.M. Kiselev o.kiselev@innopolis.ru

Innopolis university

н	i	s	0	1

Examples

Magic of universality

Graphical interpretation

Shortly about the History

Examples

Magic of universality

Graphical interpretation

I.Newton and applications of mathematics

Differential equations were intorduced into mechanics by Isaac Newton (1642-1727) in his the most famous work "Philosophiæ Naturalis Principia Mathematica"published in 1687.

- Let's define t as an instant value of time.
- Any strightforward motion of matherial point will be defined as a function x = x(t), where x is a distance between an origin and instant position of the point.
- Following by Newton first derivative of x, which is x = v(t) is a velocity of given matherial point.
- Second derivative x or first derivative of the velocity v = a(t) is an instant acceleration of the matherial point.

The mass in a constant gravity field

An example of differential equation

Consider a material point with constant mass m[kg] and a knowing constant force like gravity of the Earth P = mg, where $g \sim 9.81 \left[\frac{m}{\sec^2}\right]$ which acts on this point.

$$m\dot{v} = P, \quad v = \frac{P}{m}t + \text{const.}$$

An initial velocity of the point is equal to v_0 :

$$|v|_{t=t_0} = v_0, \quad v(t) = rac{P}{m}(t-t_0) + v_0.$$

Η	lis	tc	ory

The loan interest

Suppose one person is owner of n_0 quantities of money. The that person rates these mone for someone under special condition.

Every moment of time the debt grows proportional the quantity of the debt:

$$\frac{dn}{dt} = kn, \quad n|_{t=t_0} = n_0.$$
$$n = n_0 e^{k(t-t_0)}.$$

Graphical interpretation

A logistic equation

Let us consider a pond with carps.

- ► The instant number of carps is *N*[*carp*].
- Growth of the population is proportional of the numbers of the fish and quantity of foods with a coefficient k [1/(carp·sec])

► The stable number of the carps is *M*[*carp*].

These assumptions yield the equation:

$$\frac{dN}{dt} = k(M - N)N.$$

Short introduction into , Differential equations

Dimensionless form of equations

Primary principle

Mathematical formulae gain an universality when they lose certainty!

A mass in a gravitation field $m\dot{v} = P$

- A typical time scale is T seconds, define $\tau = \frac{t[sec]}{T[sec]}$ and τ is dimensionless variable.
- Let's define a typical scale of the velocity as $V \left| \frac{m}{sec} \right|$ and derive a dimensionless function $\nu = \frac{v[m/sec]}{v[m/sec]}$.
- Dimension for the force: $P\left[\frac{kg \cdot m}{sg \cdot sg \cdot g}\right]$.

The equation in dimensionless form

$$m\frac{d(V\nu)}{d(T\tau)} = P \Leftrightarrow \frac{V}{T}\frac{d\nu}{d\tau} = \frac{P}{m} \Leftrightarrow \frac{d\nu}{d\tau} = \frac{P}{m}\frac{T}{V}.$$

Define $\kappa = \frac{PT}{mV}$. Dimension of κ : $\frac{[kg] \cdot [m] \cdot [sec]}{[sec] \cdot [sec]} \cdot \frac{[sec]}{[kg] \cdot [m]} = \frac{1}{1}$.

Н	is	t	01	5

Equation for the linear function

$$\frac{d
u}{d au} = \kappa$$

The equation defines a linear function

 $\nu(\tau) = \kappa \tau + \text{const.}$

Therefore this dimensionless form is an universal differential model for a lot of processes:

- the velocity of a free mass under a constant gravitational field,
- the velocity of a free electric chagre under a constant electric field,
- ► a salary with the stable earn.

History	Examples	Magic of universality	Graphical interpretation	Graphical solution
	000	00000	000	00000000000

The loan interest

$$\frac{dn}{dt} = kn.$$

- ▶ a typical time scale is T seconds, define $\tau = \frac{t[sec]}{T[sec]}$ and τ is dimensionless variable;
- a typical value is *N* rubles, define dimensionless function $\nu = \frac{n[rubles]}{N[rubles]}$;
- a dimension of $k \frac{1}{[sec]}$ $\frac{d(N\nu)}{d(T\tau)} = k(n\nu), \quad \frac{N}{T} \frac{d\nu}{d\tau} = kN\nu, \quad \frac{d\nu}{d\tau} = (kT)\nu.$

Define $\lambda = kT$. Dimension of λ is:

$$[\lambda] = \frac{[sec]}{[sec]} = \frac{1}{1}.$$

The equation for an exponent function

$$\frac{\mathrm{d}\nu}{\mathrm{d}\tau} = \lambda\nu$$

This equation defines an exponential function:

$$u = Ce^{\lambda \tau}, \quad C = \text{const.}$$

If $\lambda > 0$ then the solution increases. If $\lambda < 0$ then the solution decreases.

There are a lot of examples for such mathematical model:

loan interest,

- population growth,
- nuclear decay,
- cooling down,
- penetration of new words into a language.

Dimensionless form of $\frac{dN}{dt} = k(M - N)N$

Let us derive dimensionless equation for the number of the fish. Define $\nu = N/M$, $\kappa \left[\frac{1}{sec}\right] = kM$. It yields:

$$M\frac{d\nu}{dt} = \frac{\kappa}{M} \cdot (M - M\nu)M\nu$$

Let's rewrite the equation using a new dimensionless variable $\tau=t\kappa.$ As a result we obtain

a logistic equation

$$\frac{d\nu}{d\tau} = (1-\nu)\nu.$$

Graphical interpretation

A direction field for the free body under gravitational field $\frac{dv}{dt} = 1$

A direction field for the equation $\frac{d\nu}{d\tau} = \nu$.

Examples

An integral curve $0.2 \exp(\tau)$

Isocline method for solving differential equation

Isoclines

The curves on the plane (x, y) whether f(x, y) = const is called by *isoclines*.

Using the isoclines one can draw the integral line as a solution of the differential equation:

$$\frac{dy}{dx}=f(x,y).$$

Isoclines and a direction field for $\frac{dy}{dx} = y$

Isoclines and a direction field for $\frac{dy}{dx} = -\frac{x}{y}$.

Examples

History

Magic of universality

Graphical interpretation

Isoclines and a direction field for $\frac{dy}{dx} = \frac{x}{y}$.

History

Examples

Magic of universality

Graphical interpretation

Isoclines and a direction field for $\frac{dy}{dx} = y(1-y)$.

Graphical interpretation

Isoclines and a direction field for $\frac{dy}{dx} = \sqrt{y}$.

5		у			

Examples

Magic of universality

Graphical interpretation

Isoclines and a direction field for $\frac{dy}{dx} = \operatorname{sign}(x)$.

sto	ry		

Examples Mag

Magic of universality

Graphical interpretation

Isoclines and a direction field for $\frac{dy}{dx} = 1 - 2\operatorname{sign}(y)$.

History

Examples

Magic of universality

Graphical interpretation

Steps for graphical solution of DE

Let's construct graphical solution of the equation in the form:

$$\frac{dy}{dx}=f(x,y).$$

- Define the domain of the right-hand side function.
- Define a family of isoclinic curve like as equation f(x, y) = r for a lot of values of parameter k.
- Draw the direction field on the plane (x, y).
- Starting from a given point of the plane draw the integral curve as a tangent with respect to direction field.

Disadvantages of the graphical method for solution

Disadvantages

- The graphical solution approximate the true solution.
- ▶ We cannot define global solution due to loss of accuracy.
- We cannot define the properties of the solution in neighborhood of irregular points.

Summary

- To define an uqnique solution of the DE of the first order one need an intial value of the independent variable and the value of the solution in this point.
- A graphical solution can show qualitative bechaviour of the solution.
- In special cases the trajectories of the forst order solution can be intersected.