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|.Newton and applications of mathematics

Differential equations were introduced into mechanics by Isaac
Newton (1642-1727) in his the most famous work
"Philosophize Naturalis Principia Mathematica"published in
1687.

» Let's define t as an instant value of time.

» Any straightforward motion of material point will be
defined as a function x = x(t), where x is a distance
between an origin and instant position of the point.

» Following by Newton first derivative of x, which is
x = v(t) is a velocity of given material point.

» Second derivative x or first derivative of the velocity
v = a(t) is an instant acceleration of the material
point.



A first-order differential equation defined a
direction field on a plane

N

Akl
N\

(x,y).

Steps for constructing a graphical
solution for the equation % = f(x,y).
1. Define the

domain of the right-hand side function.
2. Define a family of isoclinic

curve like as equation f(x,y) =r

for a lot of values of parameter k.

3. Draw the direction field on the plane

4. Starting from a given point of the plane draw the integral
curve as a tangent with respect to direction field.

Existence
O



Theorem about existence and uniqueness solution

Let's consider an initial value problem:

dy
o f(X,¥), Ylx=x = Yo-

Theorem

Let f(x,y) be continuous with respect to x, y and be such
that:

U X <x< X, Yi<y<Y, (x, ) €U,
f(x, )l <b, (x,y)eU,
|f(X7)/)7 f(sz)’ < C|_y*Z|,(X./y) € Ua

then there exists unique solution in some interval x € (x, ¢).

Existence
(o)



T S EEEEESS—————————————
Integration of non-homogeneous linear equations

To solve non-homogeneous first-order linear differential
equations of the form:

y' (%) + f(x)y(x) = Qx)
where P(x) and Q(x) are known functions. To solve this
equation, we first find the general solution u(x) to the
corresponding homogeneous equation:

u'(x) + f(x)u(x) = 0.
Suppose one knows a certain solution of the non-homogeneous
equation h(x):
W+ f(x)h = Q(x),
then the general solution of the non-homogeneous equation is:
y(x) = Cu(x)+ h(x), VCeR.

Linear equations
leleoleoleolele]



Method of variable of parameter.

To find a certain solution of the non-homogeneous equation
let's try to consider h(x) = C(x)u(x), where u(x) is a solution
of the complement homogeneous equation and C(x) is new
unknown function.

Substitute the form h(x) into the non-homogeneous equation.
It yields:

C'u+Cu+f(x)Cu = Q,= C'u+C(u'+f(x)u) = Q,= C'u= Q(x).

Then

Q) e Q) o [FM)
C' = U(X)’:> dC = U(X)d ,= C /XO u(t)dt'

Then a particular solution is: h(x) = u(x) [ 28 dt.

xo u(t)

Linear equations
(o] leolelelele]




Theorem about solution of a non-homogeneous

linear first-order equation

Theorem
A general solution of the first-order non-homogeneous
equation for y' + f(x) = Q(x) can be written in the form:

Q(t)
u(t)

y(x) = Cu(x) + u(x) /X dt,

where u(x) is a solution of the complementary homogeneous
equation u' + f(x)u = 0 and xg is some constant.

To proof this theorem one should differentiate the function
y(x) with respect to x.

Linear equations
[o]le] lelelele]



Non-homogeneous systems

Let's consider the system:
Y' = AY + B.

Define the fundamental set of solutions for the complimentary
system (homogeneous one):

U =AU, det(U) #0.

Denote Y = U - C(x), where C(x) is vector of unknown
functions. After substitution of the formula for Y into the

equation one gets:

U-c+U-C=A-U-C+B,
U.c’+U-C—-A-U-C=B,
U-C'+(U —-A-U) - C=B.




Non-homogeneous systems

Through the non-zero value of the Wronskian for the
fundamental set of solutions the inverse matrix of U exists and
hence:

=B=C =U"'B,

C= / x)dx.

Linear equations
[ololeole] lele]



Non-homogeneous system. An example

) ) ()

) ()

Linear equations
..... o)



Non-homogeneous system. An example

L (ex xe'X) (—eX ((sin(x) + cos(x)) — (x + 1))) .

_efx

e* xe~ G
0 e G’

, = (1 — 2(sin(x) + cos(x))> N (eXCl + XeXC2> .

-1 ex C2




Autonomous equations

A system of equations which does not contain the independent
variable is called autonomous system

y = f(y),

The equation for a pendulum is a typical example of the
autonomous system:

N B = V25
¢+ sin(¢) =0 :>{ yl = —Sinz()ﬁ)-

Autonomous systems




Autonomous systems

The predator-pray system is autonomous system:
V= Yi—Yyiye,
o= ky(—1+y1).

Any non-autonomous system can be rewritten as autonomous
one:

y = f(y, t), definey,, 1 =t =

Ve =FfWi, o Yor1), k=1,....n;
Ynt1 =L

Autonomous systems




Phase curves for the pendulum

Let's consider the sum of kinetic and potential energy of the
pendulum:

E= ¢—2 — cos(¢),
9 = 9 +sin(8) = 9(6 + sin(6)) = 0.

The full energy is a conservation law for the pendulum. These
property can be used for defining phase curves.

Vo cos(y1) = E, y, = ++/2E + 2cos(y1),

y2eR7 y1€S:>(y17)Q)ESXR.

Autonomous systems




Phase curves for the pendulum

y2

> E = _17 (}/17)/2) - (07 O)r

> —1<E<1, yp==4/2E +2cos(y1), y1 €
[— arccos(E), arccos(E)] (blue curves);

> E=1, (y1,y2) € (0,m) Uy, = £4/2E —2cos(y1),y1 €
(—m, 7)(red curve);

> 1< E, yp=++/2E —2cos(y1), 1 € [-7,7) (green
curves).

Autonomous systems




The conservation law for the predator-prey model

Let us divide the equation

dv

e —k(1— u)v,
by the equation
Z: =(1-v)u.

As a result we obtain:

dv. —k(1—u)v
du (1—v)u

Autonomous systems




The conservation law for the predator-prey model

Then rewrite the equation in the differential form:

dv du
1-VNY — ka1 - )
(-0 = k(1 0)®
or d d
Y dv = kdu — kY.
v u

After integrating we get:

log(v) — v = —klog(u) + ku+ C.

Autonomous systems
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The conservation law for the predator-prey model

Puc.: The phase portrait of the
predator-prey model, k = 2.

Autonomous systems

The value

C = log(vu*) — (ku + v)

is a conservation law
for the predator-prey model:

dCi dv uk

dr — dr vk

P du dv

du u* v

dr wvuk

dr dr

—k(1—u)+k(1l—-v)—
k(1 —v)u+ k(1 —u)v =
—k + ku+ k — kv — ku +

kvu + kv — kuv = 0.



Conservation law

The function U(x) is a conservation law of the system

Autonomous systems




Non-conservative pendulum

Let's consider a pendulum with friction:

. . _ B y) = Y2,
¢+ pd +sin(¢) =0 = { Yo = —py2 —sin(y1).

Here 1 > 0 is a friction coefficient.
Find evolution of the full energy:

Cclflf = 00 +sin(¢)¢ = 6(¢ +sin(¢)) = —ug?”.

The energy of the pendulum with friction decreases.

Autonomous systems
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Non-conservative pendulum

T T
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A predator pray system with competing species

dv du
— = — k(1 — — 2_—: 1— —b2.
o (1 —u)v—av, i (1 —v)u— bu
The derivative of the conservation law for the predator-pray
system:

C = log(vu*) — (ku + v),
ac _ (1—1>\7+k<1—1)[1—ku—\7:
dr v %

a(v® — v) + bk(v® — u).

As a result one gets that the C changes under evolution of the
system with competing species.

Autonomous systems




An example. A logistic equation x = (1 — x)x

e x = 1 is a solution.

N o x(t): x|t = X0
RN exists Vt > tg.
DN o If o — 1| < e,
! then Vt > ty, [x(t) — 1| <e.
05 %4
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A mathematical pendulum & + sin(u) =0

Let's
rewrite the equation into
the system of equations:

).(]_ = Xo, ).(2 = — Sin(X]_).

Define the initial value

: _ 0 _ 0
problem: xi[¢, = X7, Xo|t—t, = X5,
0)2
(x2)
2

+ (1 —cos(x))) < e <2

Then the solution exists Vt > t5 and




A definition

Let's consider a solution of the system of equations:

% = f(x), x = (a(t), x(t), ..., xi(t))

and assume the solution X'(t) for given initial condition
X(to) = X0 exists for all t > to.

The solution X'(t) is called stable by Lyapunov
if Ve > 0 36 > 0, such that Vt > ¢

[Ix(t) = X(t)]] <€

for any solution x(t) such that ||x(ty) — X°|| < 6.

Autonomous systems




Positive-definite functions

A function ®(x) is positive-definite in a manifold 0 € M if

®(x) >0, x £ 0, d(0) =0.

Examples:

1) &(xy, %) = xF +x2, x € R
2) (x1, %) = sin®(x1) + (1 — cos(x2)),
x € (—m/2,7/2) x (—7/2,7/2).

Lyapunov's function
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Contours of given levels

[

| If the function

‘ is positive-definite function
., then the the manifolds

of levels V(x) =¢ >0

are closed curves

around the point x = 0.




Lyapunov's function

Definition
A continuously differentiable function L(x) is called Lyapunov
function for the system

at the equilibrium x = 0 if:
> Le(Ch), L(x):R" > R;
» L(x) =0, x=0;
> L(x) >0, x#£0;
» Je > 0 such that L(x(t)) <0, as V||x|| < e.

Lyapunov's function




Second Lyapunov's stability theorem

Theorem

If there exist the Lyapunov function for the system

then the zero equilibrium is stable.

A scetch of proof. Define §(¢) = diam(L(x) = €). If L <0,
then the current position should be into or on the contour
L = €. Therefore, the conditions of the Lyapunov stability fill.

Lyapunov's function




Asymptotic stability

Definition
The equilibrium a is called asymptotic stable if the equilibrium
is stable and

30 : [|x(0) — al| < ¢, = tlim x(t) = a.

Lyapunov's function




Theorem about asymptotic stability

Theorem

Let L <0, x € M., M., : L(x), then lim,_.. x(t) = a.
A scetch of proof.
Suppose Ja: € > a > 0, L(x) — a. Then for

L(x) =« >0, L =0 it contradicts to the condition of the
theorem.

Lyapunov's function
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An example. A load with a spring

mx + kx = 0,
d?x _0 B kt
kdt2+ ? T= m

d?x

ﬁ‘i‘X*O




A load with a spring
dX1 dX2

=Xp, — = —X.

dr ¥ dr

The full mechanical energy can be considered as a Lyapunov
function:

% A
2 2’
d dX2 dX1
T = xe2 R
dr X2d7'+xld7'

X2(_X]_) + X1 X0 = 0.

Lyapunov's function




An example. A nonlinear oscillator

' +u—uP=0.
u=xy, U =x,

/ / 3
X] = Xo, Xo = —X1 + X{.

Let's examine a function

d
/ /
—L = xoXy + X1X] =

dt

3 3
X(—x1 + X7) + x1%0 = XoX;

So, the function £ cannot be a Lyapunov function for given

dynamical system.

Lyapunov's function




An example. A nonlinear oscillator

The Lyapunov function:

7 1 1
X—2+fxf—ixf.

L=
2 2

If x? + x5 < 1 then the L(x;,x) > 0, (x1,x) # (0,0) and

L = X2)'(2 -+ )'(1(X1 — X3) —

X2(-X1 + Xf) +X2(X1 — Xf) =0.

Lyapunov's function




Stability of equilibrium

The a € R” is called equilibrium of the system x = f(x), if
f(a) =0.
First Lyapunov's stability theorem

Let f(x) be differentiable and real parts of all eigenvalues A4

for the matrix
p— %
x—a o aX/

are negative, then the equilibrium a is stable solution of the
system x = f(x).

O0f(x)
ox

X=a

Lyapunov's function




The usage of the first Lyapunov's stability theorem

Let's consider the logistic equation.

x = (1—x)x.

There are two points of equilibrium x =0 and x = 1.

_ 9 2y _
A:&(x—x)f1—2x,

Aper= -1, |JA=Al=0,)=—1.

The equilibrium x = 1 is stable.
Ao=1 |JA-X=0X=L1

Then the equilibrium x = 0 does not meet the terms of first
Lyapunov's stability theorem.

Lyapunov's function



A pendulum with small viscosity

U+ pd+sin(u) =0,

( 2 > N (—sig(xl) _):fX2> ,

The pendulum has two points of equilibrium: (u, &) = (0,0)
and (u, u) = (—m,0) in the phase space S x R.

A( 0 1) (0 1)
COS(Xl) 2 (x1,%2)=(0,0) -1 H '

u+ 2 —4
A=A H+1=0, A= 1 2“ .

Then the point (0,0) is stable.

Lyapunov's function
O




A pendulum with small viscosity

Let's consider the point (—,0).

0 1 0 1
A= cos(x1) —\1 )
! (x1,%2)=(—,0)

Then due to the first Lyapunov's stability theorem the point
(—m,0) does not meet the terms of the first Lyapunov's
stability theorem.

Lyapunov's function
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An unstable knot. A\; > A2 > 0.

A general solution:

(1)-c () e (4)

Singular pointS
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A stable knot. A\ < Ay < 0

then

)\1——3,(11—<_11>,>\2——1Oé2—<1).

A general solution:

(1)-sev( 1) e (1)
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A saddle point. Ay < 0 < \;

N : %:y+2x7 (1—/\) 2 —0
< & =2y + x. 2 (1-X) |
/\

A general solution:

(1)-e () o)

Singular pointS




Sapienticat
An unstable line. A\ =0, A, > 0

] 4
e Zoy+x, [1-0 1 |_,
R 2% IR N CERY

)\1_0,()41_(_11>,)\2_27(12_(1).

A general solution:

Singular pointS



A stable line. A\ <0, A\, =0

R [T e

e

/\1——2,061—(1),/\2—0,0[2—<_11>.

A general solution:
1
—2t
Cle < 1

(1)

then

ee(l)

Singular pointS




A degenerated stable knot. One eigenvalue and
two eigenvectors

1 0
Alzl,(xlzet<O),)\zzl,o@:et<1).

A general solution:

(¥)=ae(o) e (3)

Singular pointS




Sapienti sat

A degenerated unstable knot. Joint vector

1
)\1_1,041_et(0 s

t

1 .

joint vector: a, = ef (

~ —

A general solution:

(%) =ae(y)ce ().

Singular pointS




A degenerated stable knot. Two eigenvectors

0 (—1—/\)‘_0’

A general solution:

(1)-se(4) < (8)

Singular pointS
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A degenerated stable knot. Joint vector

1
)\1_—1,051_€'t<0>./

.. t
joint vector: ap = et ( 15 ) :

A general solution:

(2)-e(8) e (is)

Singular pointS
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A stable focus. R(A12) < 0

S
gzzy—?)x? ‘(1—)\) -3 ‘:0?
4 =y —2x. 1 (—=2—=X)

1+ iﬁ 1

A= — > 3+iv/3 )
6
—1+iV/3 1

)\2: f’ a2—e 3-i\/3 .
6

A general solution:

1 1
(i)—a&”( 343 > +Cze)‘2t< 3_i\/3 >
6

Singular pointS




A real-valued solutions

Lemma

Suppose one get complex valued solution of a system with real
coefficients. Then the real part of the solution and imaginary
part of the solution are solutions of the system.

Proof.

Consider y = u(t) +iv(t), x(t) = p(t) + iq(t), where u, v, p, q
are real-valued functions. Substitute the formulas into the
system of equations and collect the real and imaginary parts.




Example of real solution

Singular pointS



A general solution

y cos <@t>
(1) - e :
X fcos<\/§t>+§sin <§t)
_ V3
et sin ( 5 t)
V3
6

Here ¢;» € R.

Singular pointS
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An unstable focus. R(A12) > 0

Singular pointS
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Center. %(A\12 = 0)

A general solution:

v\ cos(v/2t) sin(v/2t))
< X ) —a( —%sin(ﬂt) ) +b< %cos( 2t) ) '

Singular pointS




Center. Real-valued solution

(1) 582%)

r=va+h >0, ¢ = arctan <b> € [-n/2,7/2).

a

y 23 =r

Singular pointS




Singular points

AN

) L
)
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A stable limit cycle

Consider the equation
in polar coordinates.

F=r(l-—r), ézl.

Then the point
r = 0 is unstable equilibrium.

The
point r = 1 is a stable one
Puc.: The stable limit cycle. due to the first Lyapunov's

theorem the linear part in the
neighborhood of the point r = 1:

r=1+R=R=—-R.

Limit cycles
(o)
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A semi-stable limit cycle

Puc.: The semi-stable limit cycle.

Consider the equation
in polar coordinates.

F=r(r—12 ¢=1

Then the point

r = 0 is unstable equilibrium.
If r <1, then F > 0, and
trajectories tend to r = 1.
ifr>1,

then F > 0, and r — oo.

Limit cycles
(o)
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A formal approach

Let's consider the equation:

u(xvz) n
> a(X, u)dyu = f(u, 2.
k=1
» and
4 an initial curve x, = yi(s), k=1,...,n,

u=v(s), s € R" ! The system
of characteristic equations has the form:

du o
pl f(u,x(t)). (1)

ka

— = X k=1,...
dt ak(X,U), ) , N,

Substitute the characteristic a family of initial conditions:

Xklt=0 = Yk(5), ule=o = v(5), Se€R. (2)




The theorem of the existence of unique solution

The function u(s t) is differentiating on s;, t, then to be
differentiation on x; we need to consider condition for the
Jacobian:
I(x)
(s, t)

If the initial curve does not touch of the characteristic curves
at t = 0, then the following theorem can be formulated.

£ 0.

Theorem

Let the coefficients of the equation and right-hand side are
Lipshician on their variables, the initial curve is differentiating
on s and does not touch to the characteristic curves, then the
unique solution exists in a neighborhood of the initial curve.



Counterexamples

An example
yOxu — x0yu = 0.

The characteristics are the circumstances x> + y? = const. Let
the initial curve be a beam x > 0, y = 1. On this beam v = x,
then as x — 0,y — 1 the equation and initial condition
contradict, the problem does not have a solution.

Let's consider the second example for the same equation. If
the initial curve coincides to the circumstance x? + y? = 1 and
u =1, we do not have a value of the function on others
characteristic curves. As a result, we can obtain a lot of
different solutions for the same problem:

=X 4y? U= (4 y?)

Then the problem does not have a unique solution.




Conservation laws

The derivative on t
a(x,y)oxu+ b(x,y)0,u=0
gives an opportunity to connect to the system of equations:
X':a(x,y), y/:b(Xa}/)-
Then, instead of the equation in partial derivatives, the system
of the equations can be considered.
In a general case u(X) is a solution of the equation

n

> a(R)0gu =0. (3)

k=1
which is a conservation law for the system:
ka
— =a(x), k=1,...,n.
dt k( )/ ) )
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