Sapienti sat

O.M. Kiselev o.kiselev@innopolis.ru

Innopolis university

Outlines

Existence of unique solution

Linear first-order equations

Autonomous systems

Lyapunov's function

Singular points of the first order equations

Limit cycles

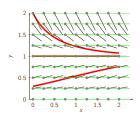
Partial derivative equations of first order

I.Newton and applications of mathematics

Differential equations were introduced into mechanics by Isaac Newton (1642-1727) in his the most famous work "Philosophiæ Naturalis Principia Mathematica"published in 1687.

- Let's define t as an instant value of time.
- Any straightforward motion of material point will be defined as a function x = x(t), where x is a distance between an origin and instant position of the point.
- Following by Newton first derivative of x, which is x = v(t) is a velocity of given material point.
- Second derivative x or first derivative of the velocity v = a(t) is an instant acceleration of the material point.

A first-order differential equation defined a direction field on a plane



(x, y).

Steps for constructing a graphical solution for the equation $\frac{dy}{dx} = f(x, y)$. 1. Define the domain of the right-hand side function. 2. Define a family of isoclinic curve like as equation f(x, y) = r for a lot of values of parameter k. 3. Draw the direction field on the plane

4. Starting from a given point of the plane draw the integral curve as a tangent with respect to direction field.

Theorem about existence and uniqueness solution

Let's consider an initial value problem:

$$\frac{dy}{dx}=f(x,y), \ y|_{x=x_0}=y_0.$$

Theorem

Let f(x, y) be continuous with respect to x, y and be such that:

$$\exists U: X_l < x < X_r, \quad Y_l < y < Y_u, \ (x_0, y_0) \in U; \ |f(x, y)| < b, \quad (x, y) \in U; \ |f(x, y) - f(x, z)| < C|y - z|, (x, y) \in U,$$

then there exists unique solution in some interval $x \in (x_0, c)$.

Integration of non-homogeneous linear equations

To solve non-homogeneous first-order linear differential equations of the form:

$$y'(x) + f(x)y(x) = Q(x)$$

where P(x) and Q(x) are known functions. To solve this equation, we first find the general solution u(x) to the corresponding homogeneous equation:

$$u'(x)+f(x)u(x)=0.$$

Suppose one knows a certain solution of the non-homogeneous equation h(x):

$$h'+f(x)h=Q(x),$$

then the general solution of the non-homogeneous equation is:

$$y(x) = Cu(x) + h(x), \quad \forall C \in \mathbb{R}.$$

Method of variable of parameter.

To find a certain solution of the non-homogeneous equation let's try to consider h(x) = C(x)u(x), where u(x) is a solution of the complement homogeneous equation and C(x) is new unknown function.

Substitute the form h(x) into the non-homogeneous equation. It yields:

$$C'u+Cu'+f(x)Cu=Q, \Rightarrow C'u+C(u'+f(x)u)=Q, \Rightarrow C'u=Q(x)$$

Then

$$C' = rac{Q(x)}{u(x)}, \Rightarrow dC = rac{Q(x)}{u(x)}dx, \Rightarrow C = \int_{x_0}^x rac{Q(t)}{u(t)}dt.$$

Then a particular solution is: $h(x) = u(x) \int_{x_0}^x \frac{Q(t)}{u(t)} dt$.

Theorem about solution of a non-homogeneous linear first-order equation

Theorem

A general solution of the first-order non-homogeneous equation for y' + f(x) = Q(x) can be written in the form:

$$y(x) = Cu(x) + u(x) \int_{x_0}^x \frac{Q(t)}{u(t)} dt,$$

where u(x) is a solution of the complementary homogeneous equation u' + f(x)u = 0 and x_0 is some constant.

To **proof** this theorem one should differentiate the function y(x) with respect to x.

Non-homogeneous systems

Let's consider the system:

$$Y' = AY + B.$$

Define the fundamental set of solutions for the complimentary system (homogeneous one):

$$U' = AU$$
, $\det(U) \neq 0$.

Denote $Y = U \cdot C(x)$, where C(x) is vector of unknown functions. After substitution of the formula for Y into the equation one gets:

$$U' \cdot C + U \cdot C' = A \cdot U \cdot C + B,$$

$$U \cdot C' + U' \cdot C - A \cdot U \cdot C = B,$$

$$U \cdot C' + (U' - A \cdot U) \cdot C = B.$$

Non-homogeneous systems

Through the non-zero value of the Wronskian for the fundamental set of solutions the inverse matrix of U exists and hence:

$$U \cdot C' = B \Rightarrow C' = U^{-1}B,$$

 $C = \int U^{-1}(x) \cdot B(x) dx.$

Non-homogeneous system. An example

$$\frac{d}{dx}\mathbf{y} = \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix}\mathbf{y} + \begin{pmatrix} \sin(x)\\ 1 \end{pmatrix}.$$
$$U = \begin{pmatrix} e^x & x & e^x\\ 0 & e^x \end{pmatrix}, \quad U^{-1} = \begin{pmatrix} e^{-x} & -x & e^{-x}\\ 0 & e^{-x} \end{pmatrix},$$
$$y = \begin{pmatrix} e^x & x & e^x\\ 0 & e^x \end{pmatrix} \int \begin{pmatrix} e^{-x} & -x & e^{-x}\\ 0 & e^{-x} \end{pmatrix} \begin{pmatrix} \sin(x)\\ 1 \end{pmatrix} dx = \begin{pmatrix} e^x & x & e^x\\ 0 & e^x \end{pmatrix} \begin{pmatrix} \int e^{-x} \sin(x) - x e^{-x} dx\\ \int e^{-x} dx \end{pmatrix}.$$

Non-homogeneous system. An example

$$y = \begin{pmatrix} e^{x} & x e^{x} \\ 0 & e^{x} \end{pmatrix} \begin{pmatrix} -e^{-x} \left(\frac{1}{2}(\sin(x) + \cos(x)) - (x+1)\right) \\ -e^{-x} \end{pmatrix} + \\ \begin{pmatrix} e^{x} & x e^{x} \\ 0 & e^{x} \end{pmatrix} \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix}, \\ y = \begin{pmatrix} 1 - \frac{1}{2}(\sin(x) + \cos(x)) \\ -1 \end{pmatrix} + \begin{pmatrix} e^{x}C_{1} + x e^{x}C_{2} \\ e^{x}C_{2} \end{pmatrix}.$$

Autonomous equations

A system of equations which does not contain the independent variable is called *autonomous system*

 $\dot{\boldsymbol{y}} = \boldsymbol{f}(\boldsymbol{y}),$

The equation for a pendulum is a typical example of the autonomous system:

$$\ddot{\phi} + \sin(\phi) = 0 \Rightarrow \begin{cases} \dot{y}_1 = y_2, \\ \dot{y}_2 = -\sin(y_1). \end{cases}$$

Autonomous systems

The predator-pray system is autonomous system:

$$\begin{cases} \dot{y}_1 = y_1 - y_1 y_2, \\ \dot{y}_2 = k y_2 (-1 + y_1). \end{cases}$$

Any non-autonomous system can be rewritten as autonomous one:

$$\dot{\mathbf{y}} = f(\mathbf{y}, t), \text{ define } y_{n+1} = t \Rightarrow$$

$$\begin{cases} \dot{y}_k = f_k(y_1, \dots, y_{n+1}), k = 1, \dots, n; \\ \dot{y}_{n+1} = 1. \end{cases}$$

Phase curves for the pendulum

Let's consider the sum of kinetic and potential energy of the pendulum:

$$\mathsf{E} = rac{\phi^2}{2} - \cos(\phi),$$

$$\frac{dE}{dt} = \dot{\phi}\ddot{\phi} + \sin(\phi)\dot{\phi} = \dot{\phi}(\ddot{\phi} + \sin(\phi)) = 0.$$

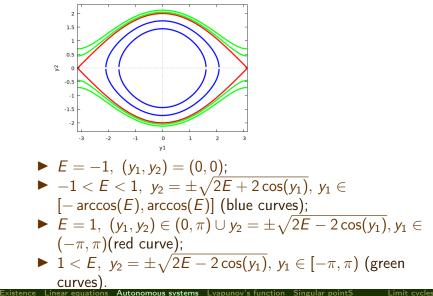
The full energy is a conservation law for the pendulum. These property can be used for defining phase curves.

$$\frac{y_2^2}{2} - \cos(y_1) = E, \quad y_2 = \pm \sqrt{2E + 2\cos(y_1)},$$

$y_2 \in \mathbb{R}, \ y_1 \in \mathbb{S} \Rightarrow (y_1, y_2) \in \mathbb{S} \times \mathbb{R}.$

Existence	Linear equations	Autonomous systems	Lyapunov's function	Singular pointS	Limit cycles	PDE
	0000000	00000000000000	0000000000000000	000000000000000000000000000000000000000		0000

Phase curves for the pendulum



it cycles PDE

The conservation law for the predator-prey model

Let us divide the equation

$$\frac{dv}{d\tau}=-k(1-u)v,$$

by the equation

$$\frac{du}{d\tau} = (1 - v)u.$$

As a result we obtain:

$$\frac{dv}{du} = \frac{-k(1-u)v}{(1-v)u}$$

The conservation law for the predator-prey model

Then rewrite the equation in the differential form:

$$(1-v)\frac{dv}{v} = -k(1-u)\frac{du}{u}$$

or

$$\frac{dv}{v}-dv=kdu-k\frac{du}{u}.$$

After integrating we get:

$$\log(v) - v = -k\log(u) + ku + C.$$

The conservation law for the predator-prey model

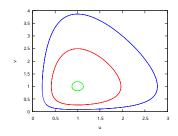


Рис.: The phase portrait of the predator-prey model, k = 2.

The value

 $C = \log(vu^k) - (ku + v)$

is a conservation law for the predator-prey model:

 $\frac{dC}{d\tau} = \frac{dv}{d\tau} \frac{u^k}{vu^k} + k \frac{du}{d\tau} \frac{u^{k-1}v}{vu^k} - k \frac{du}{d\tau} - \frac{dv}{d\tau} = -k(1-u) + k(1-v) - k(1-v)u + k(1-u)v = -k + ku + k - kv - ku + kvu + kv - kuv = 0.$

Conservation law

The function $U(\mathbf{x})$ is a conservation law of the system

 $\dot{\textbf{x}} = \textbf{f}(\textbf{x})$

if

$$\sum_{k=1}^n \frac{\partial U}{\partial x_k} f_k(\mathbf{x}) = 0.$$

Non-conservative pendulum

Let's consider a pendulum with friction:

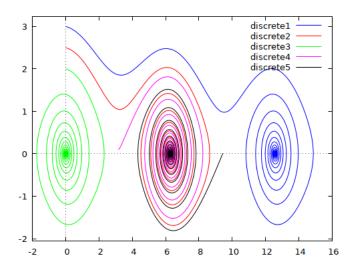
$$\ddot{\phi} + \mu \dot{\phi} + \sin(\phi) = 0 \Rightarrow \begin{cases} y_1' = y_2, \\ y_2' = -\mu y_2 - \sin(y_1). \end{cases}$$

Here $\mu > 0$ is a friction coefficient. Find evolution of the full energy:

$$\frac{dE}{dt} = \dot{\phi}\ddot{\phi} + \sin(\phi)\dot{\phi} = \dot{\phi}(\ddot{\phi} + \sin(\phi)) = -\mu\dot{\phi}^2.$$

The energy of the pendulum with friction decreases.

Non-conservative pendulum



Existence Linear equations

Autonomous systems 00000000000000000

Lyapunov's function Singular pointS

Limit cycles PDE

A predator pray system with competing species

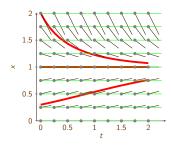
$$\frac{dv}{d\tau} = -k(1-u)v - av^2, \frac{du}{d\tau} = (1-v)u - bu^2.$$

The derivative of the conservation law for the predator-pray system:

$$C = \log(vu^{k}) - (ku + v),$$
$$\frac{dC}{d\tau} = \left(\frac{1}{v} - 1\right)\dot{v} + k\left(\frac{1}{v} - 1\right)\dot{u} - k\dot{u} - \dot{v} = a(v^{2} - v) + bk(u^{2} - u).$$

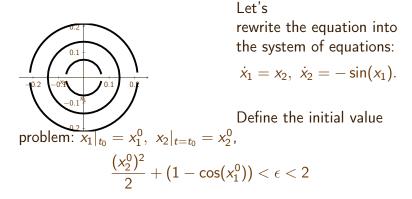
As a result one gets that the C changes under evolution of the system with competing species.

An example. A logistic equation $\dot{x} = (1 - x)x$



• $x \equiv 1$ is a solution. • x(t): $x|_{t_0} = x_0$ exists $\forall t > t_0$. • If $|x_0 - 1| < \epsilon$, then $\forall t > t_0$, $|x(t) - 1| < \epsilon$.

A mathematical pendulum $\ddot{u} + \sin(u) = 0$



Then the solution exists $\forall t > t_0$ and

$$\frac{x_2^2}{2} + (1 - \cos(x_1)) < \epsilon.$$

A definition

Let's consider a solution of the system of equations:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \ \mathbf{x} = (x_1(t), x_2(t), \dots, x_n(t))$$

and assume the solution $\mathcal{X}(t)$ for given initial condition $\mathcal{X}(t_0) = \mathcal{X}^0$ exists for all $t > t_0$.

The solution $\mathcal{X}(t)$ is called stable by Lyapunov

if $\forall \epsilon > 0 \ \exists \delta > 0$, such that $\forall t > t_0$

 $||\mathbf{x}(t) - \mathcal{X}(t)|| < \epsilon$

for any solution $\mathbf{x}(t)$ such that $||\mathbf{x}(t_0) - \mathcal{X}^0|| < \delta$.

Positive-definite functions

A function $\Phi(\textbf{x})$ is positive-definite in a manifold $0\in\mathcal{M}$ if

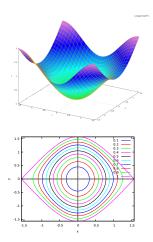
$$\Phi(\mathbf{x}) > 0, \ \mathbf{x} \neq 0, \ \Phi(0) = 0.$$

Examples:

1)
$$\Phi(x_1, x_2) \equiv x_1^2 + x_2^2, \ \mathbf{x} \in \mathbb{R}^2;$$

2) $\Phi(x_1, x_2) \equiv \sin^2(x_1) + (1 - \cos(x_2)),$
 $\mathbf{x} \in (-\pi/2, \pi/2) \times (-\pi/2, \pi/2).$

Contours of given levels



If the function is positive-definite function then the the manifolds of levels $V(\mathbf{x}) = \varepsilon > 0$ are closed curves around the point $\mathbf{x} = 0$.

Lyapunov's function

Definition

A continuously differentiable function $L(\mathbf{x})$ is called Lyapunov function for the system

 $\dot{\mathbf{x}} = f(\mathbf{x}), \quad f(\mathbf{0}) = 0,$

at the equilibrium x = 0 if:

 $\blacktriangleright \ L \in (C^1), \ L(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R};$

►
$$L(\mathbf{x}) = 0$$
, $\mathbf{x} = 0$;

$$\blacktriangleright L(\mathbf{x}) > 0, \ \mathbf{x} \neq 0;$$

• $\exists \epsilon > 0$ such that $\dot{L}(\mathbf{x}(t)) \leq 0$, as $\forall ||\mathbf{x}|| < \epsilon$.

Second Lyapunov's stability theorem

Theorem

If there exist the Lyapunov function for the system

 $\dot{\mathbf{x}} = f(\mathbf{x}), \quad f(\mathbf{0}) = 0,$

then the zero equilibrium is stable.

A scetch of proof. Define $\delta(\epsilon) = diam(L(\mathbf{x}) = \epsilon)$. If $\dot{L} \leq 0$, then the current position should be into or on the contour $L = \epsilon$. Therefore, the conditions of the Lyapunov stability fill.

Asymptotic stability

Definition

The equilibrium ${\bf a}$ is called asymptotic stable if the equilibrium is stable and

$$\exists \delta : ||\mathbf{x}(0) - \mathbf{a}|| < \delta, \Rightarrow \lim_{t \to \infty} \mathbf{x}(t) = \mathbf{a}.$$

Theorem about asymptotic stability

Theorem

Let L < 0, $\mathbf{x} \in \mathcal{M}_{\epsilon}$, $\partial \mathcal{M}_{\epsilon} : L(\mathbf{x})$, then $\lim_{t \to \infty} \mathbf{x}(t) = a$.

A scetch of proof.

Suppose $\exists \alpha : \epsilon > \alpha > 0$, $L(\mathbf{x}) \to \alpha$. Then for $L(\mathbf{x}) = \alpha > 0$, $\dot{L} = 0$ it contradicts to the condition of the theorem.

An example. A load with a spring

$$m\ddot{x} + kx = 0,$$

$$\frac{d^2x}{\frac{k}{m}dt^2} + x = 0, \quad \tau = \sqrt{\frac{k}{m}}t,$$

$$\frac{d^2x}{d\tau^2} + x = 0$$

$$\frac{dx_1}{d\tau} = x_2, \quad \frac{dx_2}{d\tau} = -x_1.$$

A load with a spring

$$\frac{dx_1}{d\tau} = x_2, \ \frac{dx_2}{d\tau} = -x_1.$$

The full mechanical energy can be considered as a Lyapunov function:

$$L = \frac{x_2^2}{2} + \frac{x_1^2}{2},$$
$$\frac{d}{d\tau}L = x_2\frac{dx_2}{d\tau} + x_1\frac{dx_1}{d\tau} = x_2(-x_1) + x_1x_2 = 0.$$

An example. A nonlinear oscillator

$$u'' + u - u^{3} = 0.$$

$$u = x_{1}, \ u' = x_{2},$$

$$x'_{1} = x_{2}, \ x'_{2} = -x_{1} + x_{1}^{3}.$$

Let's examine a function

$$\mathcal{L} = \frac{1}{2}x_2^2 + \frac{1}{2}x_1^2,$$
$$\frac{d}{dt}\mathcal{L} = x_2x_2' + x_1x_1' = x_2(-x_1 + x_1^3) + x_1x_2 = x_2x_1^3$$

So, the function $\boldsymbol{\mathcal{L}}$ cannot be a Lyapunov function for given dynamical system.

Existence	Linear equations	Autonomous systems	Lyapunov's function	Singular pointS	Limit cycles	PDE
00	000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		00	0000

An example. A nonlinear oscillator

The Lyapunov function:

$$L \equiv \frac{x_2^2}{2} + \frac{1}{2}x_1^2 - \frac{1}{4}x_1^4.$$

If $x_1^2 + x_2^2 < 1$ then the $L(x_1, x_2) > 0, \ (x_1, x_2) \neq (0, 0)$ and

$$\dot{L} = x_2 \dot{x}_2 + \dot{x}_1 (x_1 - x^3) =$$

 $x_2 (-x_1 + x_1^3) + x_2 (x_1 - x_1^3) = 0.$

Stability of equilibrium

The $\mathbf{a} \in \mathbb{R}^n$ is called equilibrium of the system $\dot{\mathbf{x}} = f(\mathbf{x})$, if $f(\mathbf{a}) \equiv 0$.

First Lyapunov's stability theorem

Let $f(\mathbf{x})$ be differentiable and real parts of all eigenvalues λ_k for the matrix

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{a}} \equiv \left(\frac{\partial f_k}{\partial x_l}\right)\Big|_{\mathbf{x}=\mathbf{a}}$$

are negative, then the equilibrium **a** is stable solution of the system $\dot{\mathbf{x}} = f(\mathbf{x})$.

The usage of the first Lyapunov's stability theorem

Let's consider the logistic equation.

 $\dot{x} = (1-x)x.$

There are two points of equilibrium $x \equiv 0$ and $x \equiv 1$.

$$A \equiv \frac{\partial}{\partial x}(x - x^2) = 1 - 2x,$$

$$A|_{x=1} = -1, \quad |A - \lambda| = 0, \lambda = -1.$$

The equilibrium x = 1 is stable.

$$A|_{x=0} = 1, \quad |A - \lambda| = 0, \lambda = 1.$$

Then the equilibrium x = 0 does not meet the terms of first Lyapunov's stability theorem.

A pendulum with small viscosity

$$\begin{aligned} \ddot{u} + \mu \dot{u} + \sin(u) &= 0, \\ \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} &= \begin{pmatrix} 0 & x_2 \\ -\sin(x_1) & -\mu x_2 \end{pmatrix}, \end{aligned}$$

The pendulum has two points of equilibrium: $(u, \dot{u}) = (0, 0)$ and $(u, \dot{u}) = (-\pi, 0)$ in the phase space $\mathbb{S} \times \mathbb{R}$.

$$A = \begin{pmatrix} 0 & 1 \\ \cos(x_1) & \mu \end{pmatrix} \Big|_{(x_1, x_2) = (0, 0)} = \begin{pmatrix} 0 & 1 \\ -1 & \mu \end{pmatrix}.$$
$$-\lambda(-\mu - \lambda) + 1 = 0, \ \lambda_{1,2} = \frac{-\mu \pm \sqrt{\mu^2 - 4}}{2}.$$

Then the point (0,0) is stable.

Existence Linear equations Autonomous systems Lyapunov's function Singular pointS 0000000000000000

Limit cycles

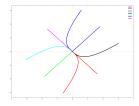
A pendulum with small viscosity

Let's consider the point $(-\pi, 0)$.

$$A = \begin{pmatrix} 0 & 1 \\ \cos(x_1) & \mu \end{pmatrix} \Big|_{(x_1, x_2) = (-\pi, 0)} = \begin{pmatrix} 0 & 1 \\ 1 & \mu \end{pmatrix}.$$
$$-\lambda(-\mu - \lambda) - 1 = 0, \ \lambda_1 \lambda_2 = -1.$$

Then due to the first Lyapunov's stability theorem the point $(-\pi, 0)$ does not meet the terms of the first Lyapunov's stability theorem.

An unstable knot. $\lambda_1 > \lambda 2 > 0$.



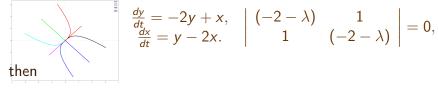
$$\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = 2y + x, \quad \left| \begin{array}{cc} (2 - \lambda) & 1 \\ 1 & (2 - \lambda) \end{array} \right| = 0,$$

$$\lambda_1 = 3, \ \alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \lambda_2 = 1, \ \alpha_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

A general solution:

$$\begin{pmatrix} y\\ x \end{pmatrix} = C_1 e^{3t} \begin{pmatrix} 1\\ 1 \end{pmatrix} + C_2 e^t \begin{pmatrix} 1\\ -1 \end{pmatrix}.$$

A stable knot. $\lambda_1 < \lambda_2 < 0$

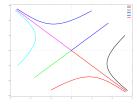


$$\lambda_1 = -3, \ \alpha_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \lambda_2 = -1 \ \alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

A general solution:

$$\left(\begin{array}{c} y \\ x \end{array}
ight) = C_1 e^{-3t} \left(\begin{array}{c} 1 \\ -1 \end{array}
ight) + C_2 e^{-t} \left(\begin{array}{c} 1 \\ 1 \end{array}
ight).$$

A saddle point. $\lambda_2 < 0 < \lambda_1$



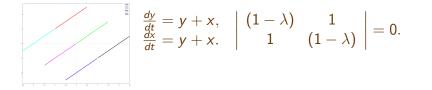
$$\frac{dy}{dt} = y + 2x, \quad \begin{vmatrix} (1-\lambda) & 2\\ 2 & (1-\lambda) \end{vmatrix} = 0.$$

$$\lambda_1 = 3, \, \alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \, \lambda_2 = -1, \, \alpha_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

A general solution:

$$\left(\begin{array}{c} y\\ x\end{array}\right) = C_1 e^{3t} \left(\begin{array}{c} 1\\ 1\end{array}\right) + C_2 e^{-t} \left(\begin{array}{c} 1\\ -1\end{array}\right).$$

An unstable line. $\lambda_1 = 0, \ \lambda_2 > 0$

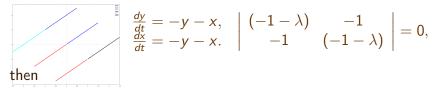


$$\lambda_1 = 0, \ \alpha_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \lambda_2 = 2, \ \alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

A general solution:

$$\left(\begin{array}{c} y\\ x\end{array}\right) = C_1 \left(\begin{array}{c} 1\\ -1\end{array}\right) + C_2 e^{2t} \left(\begin{array}{c} 1\\ 1\end{array}\right).$$

A stable line. $\lambda_1 < 0, \ \lambda_2 = 0$



$$\lambda_1 = -2, \ \alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \lambda_2 = 0, \ \alpha_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

A general solution:

$$\left(\begin{array}{c} y \\ x \end{array}
ight) = C_1 e^{-2t} \left(\begin{array}{c} 1 \\ 1 \end{array}
ight) + C_2 \left(\begin{array}{c} 1 \\ -1 \end{array}
ight).$$

A degenerated stable knot. One eigenvalue and two eigenvectors

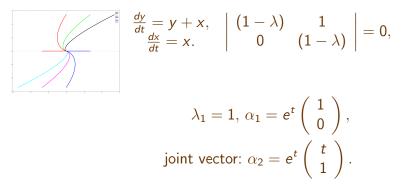
$$rac{dy}{dt} = y, \quad \left| egin{array}{c} (1-\lambda) & 0 \ dx \ dx = x. \end{array}
ight| = 0, \ \left| egin{array}{c} 0 & (1-\lambda) \ 0 & (1-\lambda) \end{array}
ight| = 0,$$

$$\lambda_1 = 1, \ \alpha_1 = e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \lambda_2 = 1, \ \alpha_2 = e^t \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

A general solution:

$$\left(\begin{array}{c} y \\ x \end{array}
ight) = C_1 e^t \left(\begin{array}{c} 1 \\ 0 \end{array}
ight) + C_2 e^t \left(\begin{array}{c} 0 \\ 1 \end{array}
ight).$$

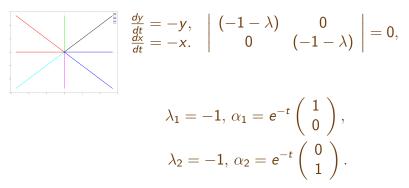
A degenerated unstable knot. Joint vector



A general solution:

$$\left(\begin{array}{c} y \\ x \end{array}
ight) = C_1 e^t \left(\begin{array}{c} 1 \\ 0 \end{array}
ight) + C_2 e^t \left(\begin{array}{c} t \\ 1 \end{array}
ight).$$

A degenerated stable knot. Two eigenvectors

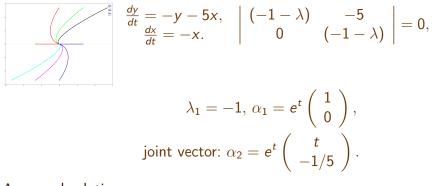


A general solution:

$$\left(\begin{array}{c} y\\ x\end{array}\right) = C_1 e^{-t} \left(\begin{array}{c} 1\\ 0\end{array}\right) + C_2 e^{-t} \left(\begin{array}{c} 0\\ 1\end{array}\right).$$

Lyapunov's function

A degenerated stable knot. Joint vector



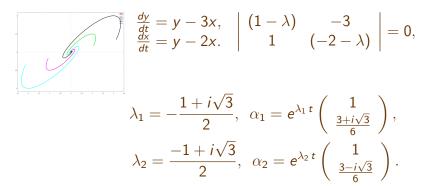
A general solution:

$$\left(\begin{array}{c} y\\ x\end{array}\right) = C_1 e^{-t} \left(\begin{array}{c} 1\\ 0\end{array}\right) + C_2 e^{-t} \left(\begin{array}{c} t\\ -1/5\end{array}\right).$$

Lyapunov's

Singular pointS

A stable focus. $\Re(\lambda_{1,2}) < 0$



A general solution:

$$\left(\begin{array}{c} y\\ x\end{array}\right) = C_1 e^{\lambda_1 t} \left(\begin{array}{c} 1\\ \frac{3+i\sqrt{3}}{6}\end{array}\right) + C_2 e^{\lambda_2 t} \left(\begin{array}{c} 1\\ \frac{3-i\sqrt{3}}{6}\end{array}\right).$$

Existence

Autonomous systems

Lyapunov's function

Singular pointS Lim

Limit cycles PDE

A real-valued solutions

Lemma

Suppose one get complex valued solution of a system with real coefficients. Then the real part of the solution and imaginary part of the solution are solutions of the system.

Proof.

Consider y = u(t) + iv(t), x(t) = p(t) + iq(t), where u, v, p, q are real-valued functions. Substitute the formulas into the system of equations and collect the real and imaginary parts.

Example of real solution

$$\begin{pmatrix} y_1 \\ x_1 \end{pmatrix} = e^{-t/2} \Re \left(\left(\cos \left(\frac{\sqrt{3}}{2} t \right) - i \sin \left(\frac{\sqrt{3}}{2} t \right) \right) \left(\begin{array}{c} 1 \\ \frac{3+i\sqrt{3}}{6} \end{array} \right) \right)$$

$$= e^{-t/2} \left(\begin{array}{c} \cos \left(\frac{\sqrt{3}}{2} t \right) \\ \frac{1}{2} \cos \left(\frac{\sqrt{3}}{2} t \right) + \frac{\sqrt{3}}{6} \sin \left(\frac{\sqrt{3}}{2} t \right) \end{array} \right),$$

$$\begin{pmatrix} y_2 \\ x_2 \end{pmatrix} = e^{-t/2} \Im \left(\left(\cos \left(\frac{\sqrt{3}}{2} t \right) - i \sin \left(\frac{\sqrt{3}}{2} t \right) \right) \left(\begin{array}{c} 1 \\ \frac{3+i\sqrt{3}}{6} \end{array} \right) \right)$$

$$= e^{-t/2} \left(\begin{array}{c} -\sin \left(\frac{\sqrt{3}}{2} t \right) \\ \frac{1}{2} \sin \left(\frac{\sqrt{3}}{2} t \right) + \frac{\sqrt{3}}{6} \cos \left(\frac{\sqrt{3}}{2} t \right) \end{array} \right).$$

Existence

Linear equations Autonomous systems Lyapunov's function Singular pointS

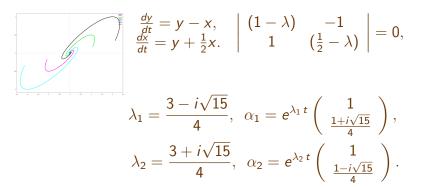
Limit cycles PDE

A general solution

$$\begin{pmatrix} y \\ x \end{pmatrix} = c_1 e^{-t/2} \begin{pmatrix} \cos\left(\frac{\sqrt{3}}{2}t\right) \\ \frac{1}{2}\cos\left(\frac{\sqrt{3}}{2}t\right) + \frac{\sqrt{3}}{6}\sin\left(\frac{\sqrt{3}}{2}t\right) \end{pmatrix} + c_2 e^{-t/2} \begin{pmatrix} -\sin\left(\frac{\sqrt{3}}{2}t\right) \\ \frac{1}{2}\sin\left(\frac{\sqrt{3}}{2}t\right) + \frac{\sqrt{3}}{6}\cos\left(\frac{\sqrt{3}}{2}t\right) \end{pmatrix}.$$

Here $c_{1,2} \in \mathbb{R}$.

An unstable focus. $\Re(\lambda_{1,2}) > 0$



A general solution:

$$\left(\begin{array}{c} y\\ x\end{array}\right) = e^{3t/4} \left(C_1 e^{-i\frac{\sqrt{15}}{4}t} \left(\begin{array}{c} 1\\ \frac{1+i\sqrt{15}}{4}\end{array}\right) + C_2 e^{i\frac{\sqrt{15}}{4}t} \left(\begin{array}{c} 1\\ \frac{1-i\sqrt{15}}{4}\end{array}\right)\right).$$

Existence

Linear equations Autono

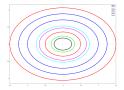
Autonomous systems

Lyapunov's function

Singular pointS Lim

Limit cycles PDE

Center. $\Re(\lambda_{1,2} = 0)$



$$\frac{\frac{dy}{dt}=2x}{\frac{dx}{dt}=-y}, \quad \begin{vmatrix} (-\lambda) & 2\\ -1 & (-\lambda) \end{vmatrix} = 0,$$

$$\lambda_1 = -i\sqrt{2}, \quad \alpha_1 = e^{-i\sqrt{2}t} \begin{pmatrix} 1\\ \frac{-i}{\sqrt{2}} \end{pmatrix},$$
$$\lambda_2 = i\sqrt{2}, \quad \alpha_2 = e^{i\sqrt{2}t} \begin{pmatrix} 1\\ \frac{i}{\sqrt{2}} \end{pmatrix}.$$

A general solution:

$$\left(\begin{array}{c} y\\ x\end{array}\right) = a \left(\begin{array}{c} \cos(\sqrt{2}t)\\ -\frac{1}{\sqrt{2}}\sin(\sqrt{2}t)\end{array}\right) + b \left(\begin{array}{c} \sin(\sqrt{2}t))\\ \frac{1}{\sqrt{2}}\cos(\sqrt{2}t)\end{array}\right)$$

Existence

Linear equations Autonomous systems

Lyapunov's function

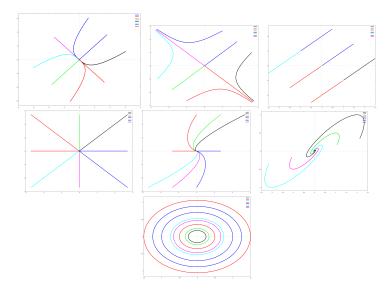
Singular pointS

Limit cycles PDE

Center. Real-valued solution

$$\begin{pmatrix} y \\ x \end{pmatrix} = r \begin{pmatrix} \cos(\sqrt{2}t + \phi) \\ -\frac{1}{\sqrt{2}}\sin(\sqrt{2}t + \phi) \end{pmatrix},$$
$$r = \sqrt{a^2 + b^2} > 0, \quad \phi = \arctan\left(\frac{b}{a}\right) \in [-\pi/2, \pi/2).$$
$$y^2 + 2x^2 = r^2.$$

Singular points



A stable limit cycle

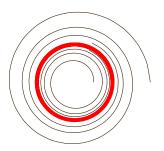


Рис.: The stable limit cycle.

neighborhood of the point r = 1:

$$r = 1 + R \Rightarrow \dot{R} = -R.$$

Consider the equation in polar coordinates.

$$\dot{r}=r(1-r),\quad\dot{\phi}=1.$$

Then the point r = 0 is unstable equilibrium. The point r = 1 is a stable one due to the first Lyapunov's theorem the linear part in the

A semi-stable limit cycle

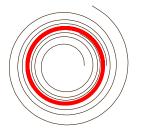


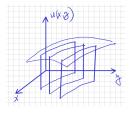
Рис.: The semi-stable limit cycle.

Consider the equation in polar coordinates.

 $\dot{r} = r(r-1)^2, \quad \dot{\phi} = 1.$

Then the point r = 0 is unstable equilibrium. If r < 1, then $\dot{r} > 0$, and trajectories tend to r = 1. If r > 1, then $\dot{r} > 0$, and $r \to \infty$.

A formal approach



Let's consider the equation:

$$\sum_{k=1}^n a_k(\vec{x}, u) \partial_{x_k} u = f(u, \vec{x}).$$

and

an initial curve $x_k = y_k(\vec{s}), \ k = 1, ..., n$, $u = v(\vec{s}), \ \vec{s} \in \mathbb{R}^{n-1}$. The system of characteristic equations has the form:

$$\frac{dx_k}{dt} = a_k(\vec{x}, u), \quad k = 1, \dots, n, \quad \frac{du}{dt} = f(u, \vec{x}(t)). \quad (1)$$

Substitute the characteristic a family of initial conditions:

$$x_k|_{t=0} = y_k(\vec{s}), \quad u|_{t=0} = v(\vec{s}), \quad \vec{s} \in \mathbf{R}.$$
 (2)

The theorem of the existence of unique solution

The function $u(\vec{s}, t)$ is differentiating on s_j, t , then to be differentiation on x_k we need to consider condition for the Jacobian:

$$\frac{\partial(\vec{x})}{\partial(\vec{s},t)}\neq 0.$$

If the initial curve does not touch of the characteristic curves at t = 0, then the following theorem can be formulated.

Theorem

Let the coefficients of the equation and right-hand side are Lipshician on their variables, the initial curve is differentiating on \vec{s} and does not touch to the characteristic curves, then the unique solution exists in a neighborhood of the initial curve.

Counterexamples

An example

$$y\partial_x u - x\partial_y u = 0.$$

The characteristics are the circumstances $x^2 + y^2 = \text{const.}$ Let the initial curve be a beam x > 0, y = 1. On this beam u = x, then as $x \to 0, y \to 1$ the equation and initial condition contradict, the problem does not have a solution. Let's consider the second example for the same equation. If the initial curve coincides to the circumstance $x^2 + y^2 = 1$ and u = 1, we do not have a value of the function on others characteristic curves. As a result, we can obtain a lot of different solutions for the same problem:

$$u = x^2 + y^2$$
, $u = (x^2 + y^2)^3$.

Then the problem does not have a unique solution.

Conservation laws

The derivative on t

$$a(x,y)\partial_x u + b(x,y)\partial_y u = 0$$

gives an opportunity to connect to the system of equations:

$$x' = a(x, y), \quad y' = b(x, y).$$

Then, instead of the equation in partial derivatives, the system of the equations can be considered.

In a general case $u(\vec{x})$ is a solution of the equation

$$\sum_{k=1}^{n} a_k(\vec{x}) \partial_{x_k} u = 0.$$
(3)

which is a conservation law for the system:

$$\frac{dx_k}{dt} = a_k(\vec{x}), \ k = 1, \dots, n.$$