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I.Newton and applications of mathematics

Differential equations were introduced into mechanics by Isaac
Newton (1642-1727) in his the most famous work
"Philosophiæ Naturalis Principia Mathematica"published in
1687.
I Let’s define t as an instant value of time.
I Any straightforward motion of material point will be

defined as a function x = x(t), where x is a distance
between an origin and instant position of the point.

I Following by Newton first derivative of x , which is
ẋ = v(t) is a velocity of given material point.

I Second derivative ẍ or first derivative of the velocity
v̇ = a(t) is an instant acceleration of the material
point.
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A first-order differential equation defined a
direction field on a plane
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Steps for constructing a graphical
solution for the equation dy

dx
= f (x , y).

1. Define the
domain of the right-hand side function.
2. Define a family of isoclinic
curve like as equation f (x , y) = r
for a lot of values of parameter k .
3. Draw the direction field on the plane

(x , y).
4. Starting from a given point of the plane draw the integral
curve as a tangent with respect to direction field.
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Theorem about existence and uniqueness solution
Let’s consider an initial value problem:

dy

dx
= f (x , y), y |x=x0 = y0.

Theorem
Let f (x , y) be continuous with respect to x , y and be such
that:

∃U : Xl < x < Xr , Yl < y < Yu, (x0, y0) ∈ U ;

|f (x , y)| < b, (x , y) ∈ U ;

|f (x , y)− f (x , z)| < C |y − z |, (x , y) ∈ U ,

then there exists unique solution in some interval x ∈ (x0, c).
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Integration of non-homogeneous linear equations
To solve non-homogeneous first-order linear differential
equations of the form:

y ′(x) + f (x)y(x) = Q(x)

where P(x) and Q(x) are known functions. To solve this
equation, we first find the general solution u(x) to the
corresponding homogeneous equation:

u′(x) + f (x)u(x) = 0.

Suppose one knows a certain solution of the non-homogeneous
equation h(x):

h′ + f (x)h = Q(x),

then the general solution of the non-homogeneous equation is:

y(x) = Cu(x) + h(x), ∀C ∈ R.
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Method of variable of parameter.

To find a certain solution of the non-homogeneous equation
let’s try to consider h(x) = C (x)u(x), where u(x) is a solution
of the complement homogeneous equation and C (x) is new
unknown function.
Substitute the form h(x) into the non-homogeneous equation.
It yields:

C ′u+Cu′+f (x)Cu = Q,⇒ C ′u+C (u′+f (x)u) = Q,⇒ C ′u = Q(x).

Then

C ′ =
Q(x)

u(x)
,⇒ dC =

Q(x)

u(x)
dx ,⇒ C =

∫ x

x0

Q(t)

u(t)
dt.

Then a particular solution is: h(x) = u(x)
∫ x

x0

Q(t)
u(t)

dt.
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Theorem about solution of a non-homogeneous
linear first-order equation

Theorem
A general solution of the first-order non-homogeneous
equation for y ′ + f (x) = Q(x) can be written in the form:

y(x) = Cu(x) + u(x)

∫ x

x0

Q(t)

u(t)
dt,

where u(x) is a solution of the complementary homogeneous
equation u′ + f (x)u = 0 and x0 is some constant.
To proof this theorem one should differentiate the function
y(x) with respect to x .
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Non-homogeneous systems
Let’s consider the system:

Y ′ = AY + B .

Define the fundamental set of solutions for the complimentary
system (homogeneous one):

U ′ = AU , det(U) 6= 0.

Denote Y = U · C (x), where C (x) is vector of unknown
functions. After substitution of the formula for Y into the
equation one gets:

U ′ · C + U · C ′ = A · U · C + B ,

U · C ′ + U ′ · C − A · U · C = B ,

U · C ′ + (U ′ − A · U) · C = B .
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Non-homogeneous systems

Through the non-zero value of the Wronskian for the
fundamental set of solutions the inverse matrix of U exists and
hence:

U · C ′ = B ⇒ C ′ = U−1B ,

C =

∫
U−1(x) · B(x)dx .
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Non-homogeneous system. An example

d

dx
y =

(
1 1
0 1

)
y +

(
sin(x)

1

)
.

U =

(
ex x ex

0 ex .

)
, U−1 =

(
e−x −x e−x

0 e−x .

)
,

y =

(
ex x ex

0 ex .

)∫ (
e−x −x e−x

0 e−x .

)(
sin(x)

1

)
dx =(

ex x ex

0 ex .

)(∫
e−x sin(x)− xe−xdx∫

e−xdx

)
.
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Non-homogeneous system. An example

y =

(
ex x ex

0 ex .

)(
−e−x

(
1
2
(sin(x) + cos(x))− (x + 1)

)
−e−x

)
+(

ex x ex

0 ex

)(
C1

C2

)
,

y =

(
1− 1

2
(sin(x) + cos(x))
−1

)
+

(
exC1 + x exC2

exC2

)
.
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Autonomous equations

A system of equations which does not contain the independent
variable is called autonomous system

ẏ = f(y),

The equation for a pendulum is a typical example of the
autonomous system:

φ̈ + sin(φ) = 0⇒
{

ẏ1 = y2,
ẏ2 = − sin(y1).
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Autonomous systems

The predator-pray system is autonomous system:{
ẏ1 = y1 − y1y2,
ẏ2 = ky2(−1 + y1).

Any non-autonomous system can be rewritten as autonomous
one:

ẏ = f (y, t), define yn+1 = t ⇒{
ẏk = fk(y1, . . . , yn+1), k = 1, . . . , n;

ẏn+1 = 1.
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Phase curves for the pendulum

Let’s consider the sum of kinetic and potential energy of the
pendulum:

E =
φ̇2

2
− cos(φ),

dE

dt
= φ̇φ̈ + sin(φ)φ̇ = φ̇(φ̈ + sin(φ)) = 0.

The full energy is a conservation law for the pendulum. These
property can be used for defining phase curves.

y 2
2

2
− cos(y1) = E , y2 = ±

√
2E + 2 cos(y1),

y2 ∈ R, y1 ∈ S⇒ (y1, y2) ∈ S× R.
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Phase curves for the pendulum

I E = −1, (y1, y2) = (0, 0);
I −1 < E < 1, y2 = ±

√
2E + 2 cos(y1), y1 ∈

[− arccos(E ), arccos(E )] (blue curves);
I E = 1, (y1, y2) ∈ (0, π) ∪ y2 = ±

√
2E − 2 cos(y1), y1 ∈

(−π, π)(red curve);
I 1 < E , y2 = ±

√
2E − 2 cos(y1), y1 ∈ [−π, π) (green

curves).
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The conservation law for the predator-prey model

Let us divide the equation

dv

dτ
= −k(1− u)v ,

by the equation
du

dτ
= (1− v)u.

As a result we obtain:

dv

du
=
−k(1− u)v

(1− v)u
.
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The conservation law for the predator-prey model

Then rewrite the equation in the differential form:

(1− v)
dv

v
= −k(1− u)

du

u

or
dv

v
− dv = kdu − k

du

u
.

After integrating we get:

log(v)− v = −k log(u) + ku + C .
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The conservation law for the predator-prey model
v
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Рис.: The phase portrait of the
predator-prey model, k = 2.

The value

C = log(vuk)− (ku + v)

is a conservation law
for the predator-prey model:

dC

dτ
=

dv

dτ

uk

vuk
+ k

du

dτ

uk−1v

vuk
−

k
du

dτ
− dv

dτ
=

−k(1− u) + k(1− v)−
k(1− v)u + k(1− u)v =

−k + ku + k − kv − ku +

kvu + kv − kuv = 0.

Existence Linear equations Autonomous systems Lyapunov’s function Singular pointS Limit cycles PDE



Sapienti sat

Conservation law

The function U(x) is a conservation law of the system

ẋ = f(x)

if
n∑

k=1

∂U

∂xk
fk(x) = 0.
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Non-conservative pendulum

Let’s consider a pendulum with friction:

φ̈ + µφ̇ + sin(φ) = 0⇒
{

y ′1 = y2,
y ′2 = −µy2 − sin(y1).

Here µ > 0 is a friction coefficient.
Find evolution of the full energy:

dE

dt
= φ̇φ̈ + sin(φ)φ̇ = φ̇(φ̈ + sin(φ)) = −µφ̇2.

The energy of the pendulum with friction decreases.
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Non-conservative pendulum
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A predator pray system with competing species

dv

dτ
= −k(1− u)v − av 2,

du

dτ
= (1− v)u − bu2.

The derivative of the conservation law for the predator-pray
system:

C = log(vuk)− (ku + v),

dC

dτ
=

(
1

v
− 1

)
v̇ + k

(
1

v
− 1

)
u̇ − ku̇ − v̇ =

a(v 2 − v) + bk(u2 − u).

As a result one gets that the C changes under evolution of the
system with competing species.
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An example. A logistic equation ẋ = (1− x)x
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• x ≡ 1 is a solution.
• x(t) : x |t0 = x0
exists ∀t > t0.
• If |x0 − 1| < ε,
then ∀t > t0, |x(t)− 1| < ε.
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A mathematical pendulum ü + sin(u) = 0
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Let’s
rewrite the equation into
the system of equations:

ẋ1 = x2, ẋ2 = − sin(x1).

Define the initial value
problem: x1|t0 = x01 , x2|t=t0 = x02 ,

(x02 )2

2
+ (1− cos(x01 )) < ε < 2

Then the solution exists ∀t > t0 and
x22
2

+ (1− cos(x1)) < ε.
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A definition

Let’s consider a solution of the system of equations:

ẋ = f(x), x = (x1(t), x2(t), . . . , xn(t))

and assume the solution X (t) for given initial condition
X (t0) = X 0 exists for all t > t0.

The solution X (t) is called stable by Lyapunov

if ∀ε > 0 ∃δ > 0, such that ∀t > t0

||x(t)−X (t)|| < ε

for any solution x(t) such that ||x(t0)−X 0|| < δ.
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Positive-definite functions

A function Φ(x) is positive-definite in a manifold 0 ∈M if

Φ(x) > 0, x 6= 0, Φ(0) = 0.

Examples:

1) Φ(x1, x2) ≡ x21 + x22 , x ∈ R2;

2) Φ(x1, x2) ≡ sin2(x1) + (1− cos(x2)),

x ∈ (−π/2, π/2)× (−π/2, π/2).
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Contours of given levels
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If the function
is positive-definite function
then the the manifolds
of levels V (x) = ε > 0
are closed curves
around the point x = 0.
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Lyapunov’s function

Definition
A continuously differentiable function L(x) is called Lyapunov
function for the system

ẋ = f (x), f (0) = 0,

at the equilibrium x = 0 if:
I L ∈ (C 1), L(x) : Rn → R;
I L(x) = 0, x = 0;
I L(x) > 0, x 6= 0;
I ∃ε > 0 such that L̇(x(t)) ≤ 0, as ∀||x|| < ε.
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Second Lyapunov’s stability theorem

Theorem
If there exist the Lyapunov function for the system

ẋ = f (x), f (0) = 0,

then the zero equilibrium is stable.
A scetch of proof. Define δ(ε) = diam(L(x) = ε). If L̇ ≤ 0,
then the current position should be into or on the contour
L = ε. Therefore, the conditions of the Lyapunov stability fill.
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Asymptotic stability

Definition
The equilibrium a is called asymptotic stable if the equilibrium
is stable and

∃δ : ||x(0)− a|| < δ, ⇒ lim
t→∞

x(t) = a.
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Theorem about asymptotic stability

Theorem
Let L̇ < 0, x ∈Mε, ∂Mε : L(x), then limt→∞ x(t) = a.
A scetch of proof.
Suppose ∃α : ε > α > 0, L(x)→ α. Then for
L(x) = α > 0, L̇ = 0 it contradicts to the condition of the
theorem.
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An example. A load with a spring

mẍ + kx = 0,

d2x
k
m
dt2

+ x = 0, τ =

√
k

m
t,

d2x

dτ 2
+ x = 0

dx1
dτ

= x2,
dx2
dτ

= −x1.
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A load with a spring

dx1
dτ

= x2,
dx2
dτ

= −x1.

The full mechanical energy can be considered as a Lyapunov
function:

L =
x22
2

+
x21
2
,

d

dτ
L = x2

dx2
dτ

+ x1
dx1
dτ

=

x2(−x1) + x1x2 = 0.
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An example. A nonlinear oscillator

u′′ + u − u3 = 0.

u = x1, u
′ = x2,

x ′1 = x2, x
′
2 = −x1 + x31 .

Let’s examine a function

L =
1

2
x22 +

1

2
x21 ,

d

dt
L = x2x

′
2 + x1x

′
1 =

x2(−x1 + x31 ) + x1x2 = x2x
3
1

So, the function L cannot be a Lyapunov function for given
dynamical system.
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An example. A nonlinear oscillator

The Lyapunov function:

L ≡ x22
2

+
1

2
x21 −

1

4
x41 .

If x21 + x22 < 1 then the L(x1, x2) > 0, (x1, x2) 6= (0, 0) and

L̇ = x2ẋ2 + ẋ1(x1 − x3) =

x2(−x1 + x31 ) + x2(x1 − x31 ) = 0.
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Stability of equilibrium

The a ∈ Rn is called equilibrium of the system ẋ = f (x), if
f (a) ≡ 0.

First Lyapunov’s stability theorem

Let f (x) be differentiable and real parts of all eigenvalues λk
for the matrix

∂f (x)

∂x

∣∣∣∣
x=a

≡
(
∂fk
∂xl

)∣∣∣∣
x=a

are negative, then the equilibrium a is stable solution of the
system ẋ = f (x).
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The usage of the first Lyapunov’s stability theorem
Let’s consider the logistic equation.

ẋ = (1− x)x .

There are two points of equilibrium x ≡ 0 and x ≡ 1.

A ≡ ∂

∂x
(x − x2) = 1− 2x ,

A|x=1 = −1, |A− λ| = 0, λ = −1.

The equilibrium x = 1 is stable.

A|x=0 = 1, |A− λ| = 0, λ = 1.

Then the equilibrium x = 0 does not meet the terms of first
Lyapunov’s stability theorem.
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A pendulum with small viscosity

ü + µu̇ + sin(u) = 0,(
ẋ1
ẋ2

)
=

(
0 x2

− sin(x1) −µx2

)
,

The pendulum has two points of equilibrium: (u, u̇) = (0, 0)
and (u, u̇) = (−π, 0) in the phase space S× R.

A =

(
0 1

cos(x1) µ

)∣∣∣∣
(x1,x2)=(0,0)

=

(
0 1
−1 µ

)
.

−λ(−µ− λ) + 1 = 0, λ1,2 =
−µ±

√
µ2 − 4

2
.

Then the point (0, 0) is stable.
Existence Linear equations Autonomous systems Lyapunov’s function Singular pointS Limit cycles PDE



Sapienti sat

A pendulum with small viscosity

Let’s consider the point (−π, 0).

A =

(
0 1

cos(x1) µ

)∣∣∣∣
(x1,x2)=(−π,0)

=

(
0 1
1 µ

)
.

−λ(−µ− λ)− 1 = 0, λ1λ2 = −1.

Then due to the first Lyapunov’s stability theorem the point
(−π, 0) does not meet the terms of the first Lyapunov’s
stability theorem.
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An unstable knot. λ1 > λ2 > 0.

dy
dt

= 2y + x ,
dx
dt

= y + 2x .

∣∣∣∣ (2− λ) 1
1 (2− λ)

∣∣∣∣ = 0,

λ1 = 3, α1 =

(
1
1

)
, λ2 = 1, α2 =

(
1
−1

)
.

A general solution:(
y
x

)
= C1e

3t

(
1
1

)
+ C2e

t

(
1
−1

)
.
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A stable knot. λ1 < λ2 < 0

dy
dt

= −2y + x ,
dx
dt

= y − 2x .

∣∣∣∣ (−2− λ) 1
1 (−2− λ)

∣∣∣∣ = 0,

then

λ1 = −3, α1 =

(
1
−1

)
, λ2 = −1α2 =

(
1
1

)
.

A general solution:(
y
x

)
= C1e

−3t
(

1
−1

)
+ C2e

−t
(

1
1

)
.
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A saddle point. λ2 < 0 < λ1

dy
dt

= y + 2x ,
dx
dt

= 2y + x .

∣∣∣∣ (1− λ) 2
2 (1− λ)

∣∣∣∣ = 0.

λ1 = 3, α1 =

(
1
1

)
, λ2 = −1, α2 =

(
1
−1

)
.

A general solution:(
y
x

)
= C1e

3t

(
1
1

)
+ C2e

−t
(

1
−1

)
.
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An unstable line. λ1 = 0, λ2 > 0

dy
dt

= y + x ,
dx
dt

= y + x .

∣∣∣∣ (1− λ) 1
1 (1− λ)

∣∣∣∣ = 0.

λ1 = 0, α1 =

(
1
−1

)
, λ2 = 2, α2 =

(
1
1

)
.

A general solution:(
y
x

)
= C1

(
1
−1

)
+ C2e

2t

(
1
1

)
.
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A stable line. λ1 < 0, λ2 = 0

dy
dt

= −y − x ,
dx
dt

= −y − x .

∣∣∣∣ (−1− λ) −1
−1 (−1− λ)

∣∣∣∣ = 0,

then

λ1 = −2, α1 =

(
1
1

)
, λ2 = 0, α2 =

(
1
−1

)
.

A general solution:(
y
x

)
= C1e

−2t
(

1
1

)
+ C2

(
1
−1

)
.
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A degenerated stable knot. One eigenvalue and
two eigenvectors

dy
dt

= y ,
dx
dt

= x .

∣∣∣∣ (1− λ) 0
0 (1− λ)

∣∣∣∣ = 0,

λ1 = 1, α1 = et
(

1
0

)
, λ2 = 1, α2 = et

(
0
1

)
.

A general solution:(
y
x

)
= C1e

t

(
1
0

)
+ C2e

t

(
0
1

)
.
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A degenerated unstable knot. Joint vector

dy
dt

= y + x ,
dx
dt

= x .

∣∣∣∣ (1− λ) 1
0 (1− λ)

∣∣∣∣ = 0,

λ1 = 1, α1 = et
(

1
0

)
,

joint vector: α2 = et
(

t
1

)
.

A general solution:(
y
x

)
= C1e

t

(
1
0

)
+ C2e

t

(
t
1

)
.
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A degenerated stable knot. Two eigenvectors

dy
dt

= −y ,
dx
dt

= −x .

∣∣∣∣ (−1− λ) 0
0 (−1− λ)

∣∣∣∣ = 0,

λ1 = −1, α1 = e−t
(

1
0

)
,

λ2 = −1, α2 = e−t
(

0
1

)
.

A general solution:(
y
x

)
= C1e

−t
(

1
0

)
+ C2e

−t
(

0
1

)
.
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A degenerated stable knot. Joint vector

dy
dt

= −y − 5x ,
dx
dt

= −x .

∣∣∣∣ (−1− λ) −5
0 (−1− λ)

∣∣∣∣ = 0,

λ1 = −1, α1 = et
(

1
0

)
,

joint vector: α2 = et
(

t
−1/5

)
.

A general solution:(
y
x

)
= C1e

−t
(

1
0

)
+ C2e

−t
(

t
−1/5

)
.
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A stable focus. <(λ1,2) < 0

dy
dt

= y − 3x ,
dx
dt

= y − 2x .

∣∣∣∣ (1− λ) −3
1 (−2− λ)

∣∣∣∣ = 0,

λ1 = −1 + i
√

3

2
, α1 = eλ1 t

(
1

3+i
√
3

6

)
,

λ2 =
−1 + i

√
3

2
, α2 = eλ2 t

(
1

3−i
√
3

6

)
.

A general solution:(
y
x

)
= C1e

λ1 t

(
1

3+i
√
3

6

)
+ C2e

λ2 t

(
1

3−i
√
3

6

)
.
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A real-valued solutions

Lemma
Suppose one get complex valued solution of a system with real
coefficients. Then the real part of the solution and imaginary
part of the solution are solutions of the system.

Proof.
Consider y = u(t) + iv(t), x(t) = p(t) + iq(t), where u, v , p, q
are real-valued functions. Substitute the formulas into the
system of equations and collect the real and imaginary parts.
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Example of real solution

(
y1
x1

)
= e−t/2<

((
cos

(√
3

2
t

)
− i sin

(√
3

2
t

))(
1

3+i
√
3

6

))
=

= e−t/2

 cos
(√

3
2
t
)

1
2

cos
(√

3
2
t
)

+
√
3
6

sin
(√

3
2
t
)  ,

(
y2
x2

)
= e−t/2=

((
cos

(√
3

2
t

)
− i sin

(√
3

2
t

))(
1

3+i
√
3

6

))
=

= e−t/2

 − sin
(√

3
2
t
)

1
2

sin
(√

3
2
t
)

+
√
3
6

cos
(√

3
2
t
)  .
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A general solution

(
y
x

)
= c1e

−t/2

 cos
(√

3
2
t
)

1
2

cos
(√

3
2
t
)

+
√
3
6

sin
(√

3
2
t
) +

c2e
−t/2

 − sin
(√

3
2
t
)

1
2

sin
(√

3
2
t
)

+
√
3
6

cos
(√

3
2
t
)  .

Here c1,2 ∈ R.
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An unstable focus. <(λ1,2) > 0

dy
dt

= y − x ,
dx
dt

= y + 1
2
x .

∣∣∣∣ (1− λ) −1
1 (1

2
− λ)

∣∣∣∣ = 0,

λ1 =
3− i

√
15

4
, α1 = eλ1 t

(
1

1+i
√
15

4

)
,

λ2 =
3 + i

√
15

4
, α2 = eλ2 t

(
1

1−i
√
15

4

)
.

A general solution:(
y
x

)
= e3t/4

(
C1e

−i
√
15
4

t

(
1

1+i
√
15

4

)
+ C2e

i
√
15
4

t

(
1

1−i
√
15

4

))
.
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Center. <(λ1,2 = 0)

dy
dt

= 2x ,
dx
dt

= −y .

∣∣∣∣ (−λ) 2
−1 (−λ)

∣∣∣∣ = 0,

λ1 = −i
√

2, α1 = e−i
√
2 t

(
1
−i√
2

)
,

λ2 = i
√

2, α2 = e i
√
2 t

(
1
i√
2

)
.

A general solution:(
y
x

)
= a

(
cos(
√

2t)

− 1√
2

sin(
√

2t)

)
+ b

(
sin(
√

2t))
1√
2

cos(
√

2t)

)
.
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Center. Real-valued solution

(
y
x

)
= r

(
cos(
√

2t + φ)

− 1√
2

sin(
√

2t + φ)

)
,

r =
√
a2 + b2 > 0, φ = arctan

(
b

a

)
∈ [−π/2, π/2).

y 2 + 2x2 = r 2.
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Singular points
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A stable limit cycle

Рис.: The stable limit cycle.

Consider the equation
in polar coordinates.

ṙ = r(1− r), φ̇ = 1.

Then the point
r = 0 is unstable equilibrium.
The
point r = 1 is a stable one
due to the first Lyapunov’s
theorem the linear part in the

neighborhood of the point r = 1:

r = 1 + R ⇒ Ṙ = −R .
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A semi-stable limit cycle

Рис.: The semi-stable limit cycle.

Consider the equation
in polar coordinates.

ṙ = r(r − 1)2, φ̇ = 1.

Then the point
r = 0 is unstable equilibrium.
If r < 1, then ṙ > 0, and
trajectories tend to r = 1.
If r > 1,
then ṙ > 0, and r →∞.
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A formal approach
Let’s consider the equation:

n∑
k=1

ak(~x , u)∂xku = f (u, ~x).

and
an initial curve xk = yk(~s), k = 1, . . . , n,
u = v(~s), ~s ∈ Rn−1. The system
of characteristic equations has the form:

dxk
dt

= ak(~x , u), k = 1, . . . , n,
du

dt
= f (u, ~x(t)). (1)

Substitute the characteristic a family of initial conditions:

xk |t=0 = yk(~s), u|t=0 = v(~s), ~s ∈ R. (2)
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The theorem of the existence of unique solution

The function u(~s, t) is differentiating on sj , t, then to be
differentiation on xk we need to consider condition for the
Jacobian:

∂(~x)

∂(~s, t)
6= 0.

If the initial curve does not touch of the characteristic curves
at t = 0, then the following theorem can be formulated.

Theorem
Let the coefficients of the equation and right-hand side are
Lipshician on their variables, the initial curve is differentiating
on ~s and does not touch to the characteristic curves, then the
unique solution exists in a neighborhood of the initial curve.
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Counterexamples
An example

y∂xu − x∂yu = 0.

The characteristics are the circumstances x2 + y 2 = const. Let
the initial curve be a beam x > 0, y = 1. On this beam u = x ,
then as x → 0, y → 1 the equation and initial condition
contradict, the problem does not have a solution.
Let’s consider the second example for the same equation. If
the initial curve coincides to the circumstance x2 + y 2 = 1 and
u = 1, we do not have a value of the function on others
characteristic curves. As a result, we can obtain a lot of
different solutions for the same problem:

u = x2 + y 2, u = (x2 + y 2)3.

Then the problem does not have a unique solution.
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Conservation laws
The derivative on t

a(x , y)∂xu + b(x , y)∂yu = 0

gives an opportunity to connect to the system of equations:

x ′ = a(x , y), y ′ = b(x , y).

Then, instead of the equation in partial derivatives, the system
of the equations can be considered.
In a general case u(~x) is a solution of the equation

n∑
k=1

ak(~x)∂xku = 0. (3)

which is a conservation law for the system:
dxk
dt

= ak(~x), k = 1, . . . , n.
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