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Lyapunov’s theory of stability

An example. A logistic equation ẋ = (1− x)x
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• x ≡ 1 is a solution.
• x(t) : x |t0 = x0

exists ∀t > t0.
• If |x0 − 1| < ε,
then ∀t > t0, |x(t)− 1| < ε.
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Lyapunov’s theory of stability

A mathematical pendulum ü + sin(u) = 0
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Let’s
rewrite the equation into
the system of equations:

ẋ1 = x2, ẋ2 = − sin(x1).

Define the initial value
problem: x1|t0 = x0

1 , x2|t=t0 = x0
2 ,

(x0
2 )2

2
+ (1− cos(x0

1 )) < ε < 2

Then the solution exists ∀t > t0 and

x2
2

2
+ (1− cos(x1)) < ε.
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Lyapunov’s theory of stability

A definition

Let’s consider a solution of the system of equations:

ẋ = f(x), x = (x1(t), x2(t), . . . , xn(t))

and assume the solution X (t) for given initial condition
X (t0) = X 0 exists for all t > t0.

The solution X (t) is called stable by Lyapunov

if ∀ε > 0 ∃δ > 0, such that ∀t > t0

||x(t)−X (t)|| < ε

for any solution x(t) such that ||x(t0)−X 0|| < δ.
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Lyapunov’s theory of stability

Positive-definite functions

A function Φ(x) is positive-definite in a manifold 0 ∈M if

Φ(x) > 0, x 6= 0, Φ(0) = 0.

Examples:

1) Φ(x1, x2) ≡ x2
1 + x2

2 , x ∈ R2;

2) Φ(x1, x2) ≡ sin2(x1) + (1− cos(x2)),

x ∈ (−π/2, π/2)× (−π/2, π/2).
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Lyapunov’s theory of stability

Contours of given levels
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If the function
is positive-definite function
then the the manifolds
of levels V (x) = ε > 0
are closed curves
around the point x = 0.
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Lyapunov’s theory of stability

Lyapunov function

Definition

A continuously differentiable function L(x) is called Lyapunov
function for the system

ẋ = f (x), f (0) = 0,

at the equilibrium x = 0 if:

I L ∈ (C 1), L(x) : Rn → R;

I L(x) = 0, x = 0;

I L(x) > 0, x 6= 0;

I ∃ε > 0 such that L̇(x(t)) ≤ 0, as ∀||x|| < ε.
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Lyapunov’s theory of stability

Second Lyapunov’s stability theorem

Theorem

If there exist the Lyapunov function for the system

ẋ = f (x), f (0) = 0,

then the zero equilibrium is stable.

A scetch of proof. Define δ(ε) = diam(L(x) = ε). If L̇ ≤ 0,
then the current position should be into or on the contour
L = ε. Therefore, the conditions of the Lyapunov stability fill.
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Lyapunov’s theory of stability

Asymptotic stability

Definition

The equilibrium a is called asymptotic stable if the equilibrium
is stable and

∃δ : ||x(0)− a|| < δ, ⇒ lim
t→∞

x(t) = a.
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Lyapunov’s theory of stability

Theorem about asymptotic stability

Theorem

Let L̇ < 0, x ∈Mε, ∂Mε : L(x), then limt→∞ x(t) = a.

A scetch of proof.
Suppose ∃α : ε > α > 0, L(x)→ α. Then for
L(x) = α > 0, L̇ = 0 it contradicts to the condition of the
theorem.
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Lyapunov’s theory of stability

An example. A load with a spring

mẍ + kx = 0,

d2x
k
m
dt2

+ x = 0, τ =

√
k

m
t,

d2x

dτ 2
+ x = 0

dx1

dτ
= x2,

dx2

dτ
= −x1.
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Lyapunov’s theory of stability

A load with a spring

dx1

dτ
= x2,

dx2

dτ
= −x1.

The full mechanical energy can be considered as a Lyapunov
function:

L =
x2

2

2
+

x2
1

2
,

d

dτ
L = x2

dx2

dτ
+ x1

dx1

dτ
=

x2(−x1) + x1x2 = 0.
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Lyapunov’s theory of stability

An example. A nonlinear oscillator

u′′ + u − u3 = 0.

u = x1, u
′ = x2,

x ′1 = x2, x
′
2 = −x1 + x3

1 .

Let’s examine a function

L =
1

2
x2

2 +
1

2
x2

1 ,

d

dt
L = x2x

′
2 + x1x

′
1 =

x2(−x1 + x3
1 ) + x1x2 = x2x

3
1

So, the function L cannot be a Lyapunov function for given
dynamical system.
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Lyapunov’s theory of stability

An example. A nonlinear oscillator

The Lyapunov function:

L ≡ x2
2

2
+

1

2
x2

1 −
1

4
x4

1 .

If x2
1 + x2

2 < 1 then the L(x1, x2) > 0, (x1, x2) 6= (0, 0) and

L̇ = x2ẋ2 + ẋ1(x1 − x3) =

x2(−x1 + x3
1 ) + x2(x1 − x3

1 ) = 0.
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Lyapunov’s theory of stability

Chetaev’s theorem about instability

Theorem

Let M is neighborhood of equilibrium a and M1 ⊂M,
a ∈ ∂M1, V (x) is continuously differential function and
V (x) = 0, x ∈ ∂M1:

V (x) > 0. V̇ > 0, x ∈M1.

then a is unstable.

A scatch of proof.
The trajectory avoids the ∂M1.
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Lyapunov’s theory of stability

An example

ẋ = x3 − y , ẏ = x + y 3,

L =
1

2
x2 +

1

2
x2,

L̇ = x(x3 − y) + y(x + y 3),

L̇ = x4 + y 4.

The equilibrium (0, 0) is unstable.
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Lyapunov’s theory of stability

Stability of equilibrium

The a ∈ Rn is called equilibrium of the system ẋ = f (x), if
f (a) ≡ 0.

First Lyapunov’s stability theorem

Let f (x) be differentiable and real parts of all eigenvalues λk
for the matrix

∂f (x)

∂x

∣∣∣∣
x=a

≡
(
∂fk
∂xl

)∣∣∣∣
x=a

are negative, then the equilibrium a is stable solution of the
system ẋ = f (x).
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Lyapunov’s theory of stability

The usage of the first Lyapunov’s stability theorem

Let’s consider the logistic equation.

ẋ = (1− x)x .

There are two points of equilibrium x ≡ 0 and x ≡ 1.

A ≡ ∂

∂x
(x − x2) = 1− 2x ,

A|x=1 = −1, |A− λ| = 0, λ = −1.

The equilibrium x = 1 is stable.

A|x=0 = 1, |A− λ| = 0, λ = 1.

Then the equilibrium x = 0 does not meet the terms of first
Lyapunov’s stability theorem.

Stability of solutions A positive-definite Lyapunov function Lyapunov stability Chetaev’s theorem First Lyapunov’s theorem Limit cycles Differential inclusion for oscillator with dry friction



Lyapunov’s theory of stability

A pendulum with small viscosity

ü + µu̇ + sin(u) = 0,(
ẋ1

ẋ2

)
=

(
0 x2

− sin(x1) −µx2

)
,

The pendulum has two points of equilibrium: (u, u̇) = (0, 0)
and (u, u̇) = (−π, 0) in the phase space S× R.

A =

(
0 1

cos(x1) µ

)∣∣∣∣
(x1,x2)=(0,0)

=

(
0 1
−1 µ

)
.

−λ(−µ− λ) + 1 = 0, λ1,2 =
−µ±

√
µ2 − 4

2
.

Then the point (0, 0) is stable.
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Lyapunov’s theory of stability

A pendulum with small viscosity

Let’s consider the point (−π, 0).

A =

(
0 1

cos(x1) µ

)∣∣∣∣
(x1,x2)=(−π,0)

=

(
0 1
1 µ

)
.

−λ(−µ− λ)− 1 = 0, λ1λ2 = −1.

Then due to the first Lyapunov’s stability theorem the point
(−π, 0) does not meet the terms of the first Lyapunov’s
stability theorem.
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Lyapunov’s theory of stability

A stable limit cycle

Figure: The stable limit cycle.

Consider the equation
in polar coordinates.

ṙ = r(1− r), φ̇ = 1.

Then the point
r = 0 is unstable equilibrium.
The
point r = 1 is a stable one
due to the first Lyapunov’s
theorem the linear part in the

neighborhood of the point r = 1:

r = 1 + R ⇒ Ṙ = −R .
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Lyapunov’s theory of stability

A semi-stable limit cycle

Figure: The semi-stable limit
cycle.

Consider the equation
in polar coordinates.

ṙ = r(r − 1)2, φ̇ = 1.

Then the point
r = 0 is unstable equilibrium.
If r < 1, then ṙ > 0, and
trajectories tend to r = 1.
If r > 1,
then ṙ > 0, and r →∞.
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Lyapunov’s theory of stability

Limit sycle
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Figure: The limit cycle for the van der Pol equation
ÿ − ν(1− y2)ẏ + y = 0.

A limit cycle is a closed trajectory which is a limit at least for
one other trajectory.
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Lyapunov’s theory of stability

Oscillator with dry friction

~F = kx

~N

m~g
~Fµ = µ ~N

If
ẋ 6= 0 then movement
of a load with
a spring is defined by
the following equation:

mẍ = −µmgsign(ẋ)− kx .

If ẋ = 0, then:

mẍ ∈ (−µmg + kx , µmg + kx).

Stability of solutions A positive-definite Lyapunov function Lyapunov stability Chetaev’s theorem First Lyapunov’s theorem Limit cycles Differential inclusion for oscillator with dry friction



Lyapunov’s theory of stability

Oscillator with dry friction

Formally it means:

mẍ ∈
{

−µmgsign(ẋ)− kx , ẋ 6= 0;
(−µmg + kx , µmg + kx), ẋ = 0.

Such model is a differential inclusion. The differential inclusion
allows us to consider the set x ∈ (−µmg/k , µmg/k) and
ẋ = 0 as equilibrium.

Stability of solutions A positive-definite Lyapunov function Lyapunov stability Chetaev’s theorem First Lyapunov’s theorem Limit cycles Differential inclusion for oscillator with dry friction



Lyapunov’s theory of stability

An example. A pendulum with dry friction

ü + µ sign(u̇) + sin(u) = 0, µ > 0,

ẋ1 = x2, ẋ2 = −µ sign(x2)− sin(x1).

The Lyapunov function:

L(x1, x2) =
1

2
x2

2 + (1− cos(x1)), L(0, 0) = 0,

L̇ = x2ẋ2 + ẋ1 sin(x1) =

x2(−µ sign(x2)− sin(x1)) + x2 sin(x1) = −µ x2 sign(x2).

Therefore, the equilibrium (0, 0) is stable.
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Lyapunov’s theory of stability

Dynamics of the oscillator with dry friction

Consider for simplicity the case sign(ẋ) 6= 0. Let us define√
kt/
√
m = τ . It yields:

x ′′ = −x − f sign (x ′) , f =
µmg

k
.

Then the equation for the movement as x ′ > 0 looks like:

x ′′ = −x − f .
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Lyapunov’s theory of stability

Dynamics of the oscillator with dry friction

Multiply the equation by x ′ then:

x ′x ′′ + x ′x = −fx ′.

This equation we can rewrite as follow:(
(x ′)2

2
+

x2

2

)′
= −fx ′.

This formula shows that the sum in the left-hand side
decreases for x ′ > 0.
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Lyapunov’s theory of stability

Dynamics of the oscillator with dry friction

x

x ′

equilibrium

trajectory

Integration on x yields:

(x ′)2

2
+

x2

2
= −fx + E .

Here E
is a constant of integration.
We rewrite
previous formula in the form:

(x ′)2 + (x + f )2 = f 2 + 2E .

That means the trajectory is a semi-circle with the center at
(−f , 0) and radius R =

√
f 2 + 2E .
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Lyapunov’s theory of stability

Dynamics of the oscillator with dry friction

x
x ′

equilibrium

trajectory

In
case sign(x ′) < 0 we obtain:

x ′′ = −x + f .

After multiplying by x ′ and
integrating we can rewrite as

follow:
(

(x ′)2

2
+ x2

2

)′
= fx ′.

So, the sum in the left-hand
side decreases for x ′ < 0 also.
After integrating we obtain:

(x ′)2 + (x − f )2 = f 2 + 2E1,

That means the trajectory is a semi-circle with the center at
(f , 0) and radius R =

√
f 2 + 2E1.
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Lyapunov’s theory of stability

Dynamics of the oscillator with dry friction

x

x ′
trajectory

equilibrium

Let the
initial point of the trajectory be
(x , x ′) = (x0, 0) where x0 < −f .
The
part of the trajectory for x ′ > 0
is the semicircle with center at
(−f , 0) and radius r = −f − x0.
Then the right point
of this semicircle (x1, 0), where

x1 = x0 + 2(−f − x0) = −2f − x0

If x1 > f then this point is initial one for the lower semicircle
with left point (x1, 0) and center at (f , 0) and radius
r = (x1 − f ).
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Lyapunov’s theory of stability

Dynamics of the oscillator with dry friction

x

x ′
trajectory

equilibrium

The left point for
this lower semicircle is (x2, 0),
where x2 = x1 − 2(x1 − f ),
x2 = −x1 + 2f ,
x2 = −(−2f − x0) + 2f ,
x2 = x0 + 4f .
If −f ≤ x2 then
the point (x2, 0) is equilibrium.
In opposite case the point

(x0 + 4f , 0) is beginning of the next circle. This next circle
begins closer to the equilibrium state then the first circle at
(x0, 0).
As the result we get the sequence {xn}nk=0 until xn ∈ [−f , f ].
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