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An example. A logistic equation x = (1 — x)x

e x =1 is a solution.

N o x(t): x|t = X0
RN exists Vt > tg.
\\ o lf [xo— 1] <,
o then Vt > ty, [x(t) — 1| <e.
05 %4

Stability of solutions
lelo]
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A mathematical pendulum & + sin(u) =0

Let's
rewrite the equation into
the system of equations:

).(]_ = Xo, ).(2 = — Sin(X]_).

Define the initial value

problem: x1],, = x¥, xo|i—s, = X3,

(5)*
2

+ (1 —cos(x))) < e <2

Then the solution exists Vt > t; and

2
52 + (1 — cos(x1)) < e.

Stability of solutions
(o] 1o
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A definition

Let's consider a solution of the system of equations:

x = f(x), x = (xa(t),x(t), ... x(t))

and assume the solution X'(t) for given initial condition
X(ty) = X° exists for all t > t,.

The solution X(t) is called stable by Lyapunov
if Ve > 0 d6 > 0, such that Vt > t

[Ix(8) = X(2)]] < e

for any solution x(t) such that ||x(t) — X°|| < 4.

Stability of solutions
leo]e]



Positive-definite functions

A function ®(x) is positive-definite in a manifold 0 € M if

®(x) >0, x £ 0, d(0) =0.

Examples:

1) O(xy, %) = x2 +x2, x € R
2) (x1, %) = sin®(x1) + (1 — cos(x2)),
x € (—mw/2,7/2) x (—7/2,7/2).

A positive-definite
(o)
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Contours of given levels

(

| If the function

‘ is positive-definite function
., then the the manifolds

of levels V(x) =¢ >0

are closed curves

around the point x = 0.

A positive-definite
O



Lyapunov function

Definition
A continuously differentiable function L(x) is called Lyapunov
function for the system

at the equilibrium x = 0 if:
> L e (ChH, L(x):R"— R;
> [(x)=0, x=0;
» [(x) >0, x#0;
» Je > 0 such that L(x(t)) <0, as V||x|| < e.

Lyapunov function
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Second Lyapunov's stability theorem

Theorem

If there exist the Lyapunov function for the system

then the zero equilibrium is stable.

A scetch of proof. Define () = diam(L(x) = ¢). If L <0,
then the current position should be into or on the contour
L = e. Therefore, the conditions of the Lyapunov stability fill.




Asymptotic stability

Definition
The equilibrium a is called asymptotic stable if the equilibrium
is stable and

36 1 ||x(0) —al| < 9, = tILn;Ox(t) = a.

Lyapunov stability
(o] leolelelele]
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Theorem about asymptotic stability

Theorem

Let L <0, x € M., OM, : L(x), then lim; ., x(t) = a.
A scetch of proof.
Suppose Jar: € > a >0, L(x) — a. Then for

L(x) =a >0, L =0 it contradicts to the condition of the
theorem.
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An example. A load with a spring

mx + kx = 0,
d’x k
ﬁdt2+x:07 T_\/;t,
d’x
ﬁ+x—0
dxy dx,
g e o=

Lyapunov stability
[oleole] lelele]




A load with a spring
dX1 dX2

=Xp, — = —X.

dr % dr

The full mechanical energy can be considered as a Lyapunov
function:

% A
2 2’
d dX2 dX1
T = xe2 R
dr X2d7'+xld7'

X2(_X]_) + X1 X0 = 0.

Lyapunov stability
[ololeolel lele]
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An example. A nonlinear oscillator

V' +u—u>=0.

/
U=xXx, U =X,

/ / 3
X] = Xo, Xo = —X1 + X{.
Let's examine a function
1 1
L=-x3+=xF
2 2 2 1>
d
—L = %Xy + x1x] =

dt

3 3
X (—x1 + X7) + x1%0 = XoX;

So, the function £ cannot be a Lyapunov function for given

dynamical system.



An example. A nonlinear oscillator

The Lyapunov function:

7 1 1
X—2+fxf—ixf.

L=
2 2

If x? + x5 < 1 then the L(x,x) > 0, (x1,x) # (0,0) and
L = X2)'(2 -+ )'(1(X1 — X3) —

X2(-X1 + Xf) +X2(X1 — Xf) =0.

Lyapunov stability
lololeolelele]



Lyapunov's theory of stability

Chetaev's theorem about instability

Theorem

Let M is neighborhood of equilibrium a and M; C M,
a € OM,, V(x) is continuously differential function and
V(x) =0, x € OMy:

V(x) >0. V>0, xe M.

then a is unstable.

A scatch of proof.
The trajectory avoids the O M.

Chetaev's theorem
(o)



An example

x=x -y y=x+ty

1 1
| L:§X2+§X2,
L=x(x*—y)+y(x+y?).
L=x*+y*

The equilibrium (0, 0) is unstable.

Chetaev's theorem
O
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Stability of equilibrium

The a € R" is called equilibrium of the system x = f(x), if
f(a) =0.
First Lyapunov's stability theorem

Let f(x) be differentiable and real parts of all eigenvalues A\,

for the matrix
X—a - aX/

are negative, then the equilibrium a is stable solution of the
system x = f(x).

Of (x)
ox

X=a

First Lyapunov’s theorem
o000



Liapunovstheorof stabiliy
The usage of the first Lyapunov's stability theorem

Let's consider the logistic equation.

x=(1-x)x.

There are two points of equilibrium x =0 and x = 1.

_ 9 2y _
A:&(x—x)f1—2x,

Apcr = -1, |JA=A=0,)=—1.

The equilibrium x = 1 is stable.
Axeo =1, |[A=A=0,A=1

Then the equilibrium x = 0 does not meet the terms of first
Lyapunov's stability theorem.

First Lyapunov’s theorem
o] leole)




A pendulum with small viscosity

U+ pu+sin(u) =0,

( 2 > N (—sig(xl) _):fX2> ,

The pendulum has two points of equilibrium: (u, 7) = (0,0)
and (u, u) = (—m,0) in the phase space S x R.

A( 0 1) (0 1)
COS(Xl) 2 (x1,%2)=(0,0) -1 M '

a4+ —4
A=A +1=0, A= 1 2“ .

Then the point (0,0) is stable.



A pendulum with small viscosity

Let's consider the point (—,0).

0 1 0 1
A= cos(x1) “\1 )
! (x1,%2)=(—,0)

Then due to the first Lyapunov's stability theorem the point
(—m,0) does not meet the terms of the first Lyapunov's
stability theorem.

First Lyapunov’s theorem
lolole)
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A stable limit cycle

Consider the equation
in polar coordinates.

F=r(l-—r), (ﬁ:l.

Then the point
r = 0 is unstable equilibrium.
The
point r = 1 is a stable one
Figure: The stable limit cycle.  due to the first Lyapunov's
theorem the linear part in the
neighborhood of the point r = 1:

r=1+R=R=—-R.
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A semi-stable limit cycle

Consider the equation
in polar coordinates.

F=r(r—1)2 ¢=1

Then the point

r = 0 is unstable equilibrium.

If r <1, then F >0, and
Figure: The semi-stable limit trajectories tend to r = 1.
cycle. Ifr>1,

then F > 0, and r — oo.




Liapunovstheorof stabiliy
Limit sycle
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Figure: The limit cycle for the van der Pol equation

y—v(l—y*)y+y=0.

A limit cycle is a closed trajectory which is a limit at least for
one other trajectory.
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Oscillator with dry friction

If
= x # 0 then movement
N .
- of a load with
] a spring is defined by
p = W *mg the following equation:

mx = —pumgsign(x) — kx.

If x =0, then:

mx € (—umg + kx, umg + kx).




Oscillator with dry friction

Formally it means:

i ¢ —umgsign(x) — kx, x #0;
(—pumg + kx, umg + kx), x =0.

Such model is a differential inclusion. The differential inclusion
allows us to consider the set x € (—umg/k, umg/k) and
x = 0 as equilibrium.




An example. A pendulum with dry friction

i+ psign(d) + sin(u) =0, u >0,

X1 = Xz, Xp = —usign(xz) — sin(xy).
The Lyapunov function:

1
L(x1, %) = §x22 + (1 — cos(x1)), L(0,0) =0,

L = X2).(2 + ).(1 Sin(X]_) =
xo(—psign(xz) — sin(x1)) + x2 sin(xq)

= — Xz sign(xz).
Therefore, the equilibrium (0, 0) is stable.



Dynamics of the oscillator with dry friction

Consider for simplicity the case sign(x) # 0. Let us define

Vkt//m= 7. It yields:

"

x"=—x—fsign(x'), f= Hme.

k

Then the equation for the movement as x’ > 0 looks like:

X" =—x—f.




Dynamics of the oscillator with dry friction

Multiply the equation by x’ then:
XX+ x'x = -

This equation we can rewrite as follow:

2 2\ /
()

This formula shows that the sum in the left-hand side
decreases for x’ > 0.
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Dynamics of the oscillator with dry friction

Integration on x yields:

/
X 2 2
trajector (x') X K4 E
2 2
Here E
is a constant of integration.
X We rewrite
equilibrium previous formula in the form:

(X' + (x+f)*=f>+2E.

That means the trajectory is a semi-circle with the center at

(—f,0) and radius R = /2 + 2E.
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Dynamics of the oscillator with dry friction

In
equilibrium case sign(x’) < 0 we obtain:

X X" =—x+f.

After multiplying by x’ and

integrating we can rewrite as
’ /

follow: % + X; = X'

So, the sum in the left-hand

trajectory

side decreases for x’ < 0 also.
After integrating we obtain:

(X')? + (x — f)* = f2 + 2E,,

That means the trajectory is a semi-circle with the center at

(f,0) and radius R = \/f? + 2E;.
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Dynamics of the oscillator with dry friction

Let the

initial point of the trajectory be

(x,x") = (x0,0) where xo < —f.

The

part of the trajectory for x’ > 0
X is the semicircle with center at

\\/ (—f,0) and radius r = —f — xq.
Then the right point
of this semicircle (x;,0), where
x1 =X+ 2(—f — x) = =2f — xo
If x; > f then this point is initial one for the lower semicircle

with left point (x;,0) and center at (f,0) and radius
r=(xg —f).
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Dynamics of the oscillator with dry friction

The left point for
this lower semicircle is (x2,0),
where x; = x; — 2(x; — f),

Xp = —X1 + 2f,
Xp = —(—Zf — Xo) -+ 2f,
X X2 :X0+4f.

\J If —f < x; then
the point (x2,0) is equilibrium.

In opposite case the point
(xo + 4f,0) is beginning of the next circle. This next circle
begins closer to the equilibrium state then the first circle at
(X()7 0)
As the result we get the sequence {x,}]_, until x, € [—f, f].
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