First Lyapunov stability theorem

O.M. Kiselev o.kiselev@innopolis.ru

Innopolis university

First Lyapunov stability theorem	Examples for first theorem	The proof of first theorem	The Lorenz system	
000	000000		000000	

First Lyapunov stability theorem

First Lyapunov stability theorem. Examples

The proof of the first Lyapunov stability theorem

The Lorenz system

Summary

A definition

Let's consider a solution of the system of equations:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \ \mathbf{x} = (x_1(t), x_2(t), \dots, x_n(t))$$

and assume the solution $\mathcal{X}(t)$ for given initial condition $\mathcal{X}(t_0) = \mathcal{X}^0$ exists for all $t > t_0$.

The solution $\mathcal{X}(t)$ is called stable by Lyapunov

if $\forall \epsilon > 0 \ \exists \delta > 0$, such that $\forall t > t_0$

 $||\mathbf{x}(t) - \mathcal{X}(t)|| < \epsilon$

for any solution $\mathbf{x}(t)$ such that $||\mathbf{x}(t_0) - \mathcal{X}^0|| < \delta$.

Stability of equilibrium

The $\mathbf{a} \in \mathbb{R}^n$ is called equilibrium of the system $\dot{\mathbf{x}} = f(\mathbf{x})$, if $f(\mathbf{a}) \equiv 0$. It is useful to use a new unknown function $\mathbf{y} = \mathbf{x} - \mathbf{a}$. Then

the system is transform to the form:

 $\dot{\mathbf{y}} = g(\mathbf{y}), \ g(0) = 0,$ $g(\mathbf{y}) \equiv f(\mathbf{y} + \mathbf{a}).$

So, let's redefine:

 $\mathbf{y} \rightarrow \mathbf{x}, \ g(\mathbf{y})) \rightarrow f(\mathbf{x}),$

and without loss of a generality we will consider below the function $f(\mathbf{x})$ and the equilibrium $\mathbf{x} = 0$: f(0) = 0.

First Lyapunov's stability theorem

Let $f(\mathbf{x})$ be differentiable and real parts of all eigenvalues λ_k for the matrix

$$A = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \bigg|_{\mathbf{x}=\mathbf{0}} \equiv \left(\frac{\partial f_k}{\partial x_l} \right) \bigg|_{\mathbf{x}=\mathbf{0}}$$

are negative, then the equilibrium $\mathbf{x} = 0$ is stable solution of the system $\dot{\mathbf{x}} = f(\mathbf{x})$.

One dimension case

Let the right-hand side of the equation be following:

$$f(x) = \lambda x + x^2(1+g(x)), \ \lambda < 0, g(x) \in \mathbf{C}^1[-\Delta,\Delta].$$

The shorter proof. Consider a time derivative of the function $L(x) = x^2$ due to the chain rule:

$$\dot{L}(x) = 2x\dot{x} = 2\lambda x^2 + x^3(1 + g(x)).$$

Then $\exists \epsilon > 0, \forall x : x^2 < \epsilon, \dot{L} < 0.$

Due to the second Lyapunov stability theorem the point x = 0 is a stable equilibrium.

A two-dimensional case. Two real eigenvalues

$$\begin{split} f_1(x_1, x_2) &= x_1 + x_2 + O(\mathbf{x}^2), \\ f_1(x_1, x_2) &= 2x_2 + O(\mathbf{x}^2). \\ A &= \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \ \lambda_1 = -1, \ \lambda_2 = -2. \\ T &= \begin{pmatrix} 1 & b \\ 0 & -b \end{pmatrix}, \quad T^{-1}AT = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}. \end{split}$$

Examples for first theorem

The proof of first theorem

theorem The Loren

00

A two-dimensional case. Two real eigenvalues

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & -b \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix},$$

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + O(\mathbf{y}^2).$$

$$L(\mathbf{y}) = y_1^2 + y_2^2,$$

$$\dot{L} = -y_1^2 - 4y_2^2 + O(\mathbf{y}^3).$$

First Lyapunov stability theorem Examples for first theorem The proof of first theorem

The Lorenz syste

00

One eigenvalue of second order

$$\begin{array}{rcl} f_1(x_1,x_2) &=& -x_1+x_2+O(\mathbf{x}^2),\\ f_1(x_1,x_2) &=& -x_2+O(\mathbf{x}^2).\\ A &=& \begin{pmatrix} -1 & 1\\ 0 & -1 \end{pmatrix}, \ \lambda_1 = -1.\\ T &=& \begin{pmatrix} 1 & 1\\ 0 & d \end{pmatrix}, \quad T^{-1}AT = \begin{pmatrix} -1 & d\\ 0 & -1 \end{pmatrix}. \end{array}$$

Examples for first theorem

The proof of first theorem

heorem I he Loren

00

One eigenvalue of second order

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & d \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix},$$

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} -1 & d \\ 0 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + O(\mathbf{y}^2).$$

$$\mathcal{L}(\mathbf{y}) = y_1^2 + y_2^2,$$

$$\dot{\mathcal{L}} = -y_1^2 + dy_1y_2 - y_2^2 + O(\mathbf{y}^3).$$

 $\exists d: -y_1^2 + dy_1y_2 - y_2^2 < 0, \ \forall (y_1, y_2) \in \mathbb{R}^2.$

Two complex conjugated eigenvalues

$$\begin{split} f_1(x_1, x_2) &= x_2 + O(\mathbf{x}^2), \\ f_1(x_1, x_2) &= -x_1 - x_2 + O(\mathbf{x}^2). \\ A &= \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \ \lambda_1 = -\frac{1 + i\sqrt{3}}{2}, \ \lambda_2 = \frac{-1 + i\sqrt{3}}{2}. \\ T &= \begin{pmatrix} 2 & -1 - i\sqrt{3} \\ 2 & -1 + i\sqrt{3} \end{pmatrix}, \quad T^{-1}AT = \begin{pmatrix} -\frac{1 + i\sqrt{3}}{2} & 0 \\ 0 & \frac{-1 + i\sqrt{3}}{2} \end{pmatrix}. \end{split}$$

Two complex conjugated eigenvalues

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 & -1 - i\sqrt{3} \\ 2 & -1 + i\sqrt{3} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} -\frac{1+i\sqrt{3}}{2} & 0 \\ 0 & \frac{-1+i\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + O(\mathbf{y}^2). \mathcal{L}(\mathbf{y}) = y_1 \overline{y}_1 + y_2 \overline{y}_2, \dot{\mathcal{L}} = -\frac{1+i\sqrt{3}}{2} |y_1|^2 - \frac{1-i\sqrt{3}}{2} |y_1|^2 - \frac{1-i\sqrt{3}}{2} |y_2|^2 + O(\mathbf{y}^3), \\ \dot{\mathcal{L}} = -|y_1|^2 - |y_2|^2 + O(\mathbf{y}^3).$$

Examples for first theorem

The proof of first theorem

orem The Lorenz system

system Sur

The multidimensional case

Let the $f(\mathbf{x})$ be such that $f(\mathbf{x}) \in \mathbf{C}^1$. Define a matrix:

$$A \equiv \left. \left(\frac{\partial f_k}{\partial x_l} \right) \right|_{\mathbf{x}=\mathbf{0}}$$

Suppose λ_k , k = 1, 2, ..., I, $I \le n$ are given order eigenvalues of the matrix A. Then $\exists T$ such that:

$$T^{-1}AT = \operatorname{diag}(\Lambda) + B_{\epsilon},$$

where diag(Λ) is diagonal matrix, where $\Lambda = \{\lambda_1, \ldots, \lambda_l\}$ are the diagonal elements taken with their orders and B_{ϵ} is a nilpotent matrix with one sup-diagonal coefficients less than given ϵ .

Lyapunov function

Define $\mathbf{x} = T \mathbf{y}$, then $\frac{d}{dt} \mathbf{y} = (\text{diag}(\Lambda) + B_{\epsilon})\mathbf{y} + O(\mathbf{y}^2).$

 $L(\mathbf{y}) = (\mathbf{y}, \overline{\mathbf{y}}),$

then

$$\frac{d}{dt}L(\mathbf{y}) = (\dot{\mathbf{y}}, \overline{\mathbf{y}}) + (\mathbf{y}, \dot{\overline{\mathbf{y}}}) = 2\sum_{k} \Re(\lambda_{k} + b_{k})|y_{k}|^{2} + O(\mathbf{y}^{3}).$$

Define $\lambda = \min_k(|\Re(\lambda_k)|)$, then

$$\frac{d}{dt}L(\mathbf{y}) < -(\lambda - \epsilon)L(\mathbf{y}).$$

Then $\mathbf{y} = 0$ is stable equilibrium, hence $\mathbf{x} = 0$ is stable equilibrium also.

The Lorenz system

First coefficients of the Fourier series yield:

$$\dot{x} = \sigma(y - x), \ \dot{y} = x(\rho - z) - y, \ \dot{z} = xy - \beta z.$$

Here β, σ, ρ are parameters of the mathematical model.

First Lyapunov stability theorem	Examples for first theorem	The proof of first theorem	The Lorenz system	Summary
000	000000		•••••••	

Properties of the solution

Change the variable: $z = \rho - w$,

$$\begin{aligned} \dot{x} &= \sigma(y-x), \quad \times x/\sigma \\ \dot{y} &= xw - y, \quad \times y \\ \dot{w} &= xy - \beta w + \beta \rho. \quad \times w, \\ \frac{1}{2}\frac{d}{dt}(\frac{x^2}{\sigma} + y^2 + w^2) &= xy - x^2 - y^2 - \beta w^2 + \beta \rho, \\ \frac{1}{2}\frac{d}{dt}(\frac{x^2}{\sigma} + y^2 + z^2) &= -(x - \frac{y}{2})^2 - \frac{3}{4}y^2 - \beta(w - \frac{\rho}{2})^2 + \frac{1}{4}\beta \rho^2. \end{aligned}$$

Corollary. All trajectories tend into the ellipsoid:

$$(x-\frac{y}{2})^2+\frac{3}{4}y^2+\beta(w-\frac{\rho}{2})^2=\frac{1}{4}\beta\rho^2.$$

The divergence

Existence of attractor

Corollary

One or several attractors are contained in the ellipsoid:

$$(x-\frac{y}{2})^2+\frac{3}{4}y^2+\beta(w-\frac{\rho}{2})^2=\frac{1}{4}\beta\rho^2.$$

Stationary points

Behaviour at (0, 0, 0)

$$A = \begin{pmatrix} -\sigma & \rho & 0\\ \sigma & -1 & 0\\ 0 & 0 & -\beta \end{pmatrix}$$
$$A_{1} = -\frac{\sqrt{\sigma^{2} + (4\rho - 2)\sigma + 1} + \sigma + 1}{2},$$
$$\lambda_{2} = \frac{\sqrt{\sigma^{2} + (4\rho - 2)\sigma + 1} - \sigma - 1}{2},$$
$$\lambda_{3} = -\beta.$$

The stability condition:

$$(\sigma + 1) > \sqrt{\sigma^2 + (4\rho - 2)\sigma + 1}$$

 $2 > 4\rho - 1, \Rightarrow \rho < 1.$

Behaviour at $((\sqrt{\beta(\rho-1)}, \sqrt{\beta(\rho-1)}, \rho-1))$

First Lyapunov stability theorem	Examples for first theorem	The proof of first theorem	The Lorenz system	
000	000000		000000	

summary

First Lyapunov stability theorem

First Lyapunov stability theorem. Examples

The proof of the first Lyapunov stability theorem

The Lorenz system

Summary

Pictures

The Lorenz syste

Summary