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First Lyapunov stability theorem

A definition

Let’s consider a solution of the system of equations:

ẋ = f(x), x = (x1(t), x2(t), . . . , xn(t))

and assume the solution X (t) for given initial condition
X (t0) = X 0 exists for all t > t0.

The solution X (t) is called stable by Lyapunov

if ∀ε > 0 ∃δ > 0, such that ∀t > t0

||x(t)−X (t)|| < ε

for any solution x(t) such that ||x(t0)−X 0|| < δ.
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First Lyapunov stability theorem

Stability of equilibrium

The a ∈ Rn is called equilibrium of the system ẋ = f (x), if
f (a) ≡ 0.
It is useful to use a new unknown function y = x− a. Then
the system is transform to the form:

ẏ = g(y), g(0) = 0,

g(y) ≡ f (y + a).

So, let’s redefine:

y→ x, g(y))→ f (x),

and without loss of a generality we will consider below the
function f (x) and the equilibrium x = 0: f (0) = 0.
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First Lyapunov stability theorem

First Lyapunov’s stability theorem

Let f (x) be differentiable and real parts of all eigenvalues λk
for the matrix

A =
∂f (x)

∂x

∣∣∣∣
x=0

≡
(
∂fk
∂xl

)∣∣∣∣
x=0

are negative, then the equilibrium x = 0 is stable solution of
the system ẋ = f (x).
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First Lyapunov stability theorem

One dimension case

Let the right-hand side of the equation be following:

f (x) = λx + x2(1 + g(x)), λ < 0, g(x) ∈ C1[−∆,∆].

The shorter proof. Consider a time derivative of the
function L(x) = x2 due to the chain rule:

L̇(x) = 2xẋ = 2λx2 + x3(1 + g(x)).

Then ∃ε > 0,∀x : x2 < ε, L̇ < 0.
Due to the second Lyapunov stability theorem the point x = 0
is a stable equilibrium.

First Lyapunov stability theorem Examples for first theorem The proof of first theorem The Lorenz system Summary



First Lyapunov stability theorem

A two-dimensional case. Two real eigenvalues

f1(x1, x2) = x1 + x2 + O(x2),

f1(x1, x2) = 2x2 + O(x2).

A =

(
1 1
0 2

)
, λ1 = −1, λ2 = −2.

T =

(
1 b
0 −b

)
, T−1AT =

(
−1 0
0 −2

)
.
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First Lyapunov stability theorem

A two-dimensional case. Two real eigenvalues

(
x1

x2

)
=

(
1 b
0 −b

)(
y1

y2

)
,(

ẏ1

ẏ2

)
=

(
−1 0
0 −2

)(
y1

y2

)
+ O(y2).

L(y) = y 2
1 + y 2

2 ,

L̇ = −y 2
1 − 4y 2

2 + O(y3).
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First Lyapunov stability theorem

One eigenvalue of second order

f1(x1, x2) = −x1 + x2 + O(x2),

f1(x1, x2) = −x2 + O(x2).

A =

(
−1 1
0 −1

)
, λ1 = −1.

T =

(
1 1
0 d

)
, T−1AT =

(
−1 d
0 −1

)
.
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First Lyapunov stability theorem

One eigenvalue of second order

(
x1

x2

)
=

(
1 1
0 d

)(
y1

y2

)
,(

ẏ1

ẏ2

)
=

(
−1 d
0 −1

)(
y1

y2

)
+ O(y2).

L(y) = y 2
1 + y 2

2 ,

L̇ = −y 2
1 + dy1y2 − y 2

2 + O(y3).

∃d : −y 2
1 + dy1y2 − y 2

2 < 0, ∀(y1, y2) ∈ R2.
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First Lyapunov stability theorem

Two complex conjugated eigenvalues

f1(x1, x2) = x2 + O(x2),

f1(x1, x2) = −x1 − x2 + O(x2).

A =

(
0 1
−1 −1

)
, λ1 = −1 + i

√
3

2
, λ2 =

−1 + i
√

3

2
.

T =

(
2 −1− i

√
3

2 −1 + i
√

3

)
, T−1AT =

(
−1+i

√
3

2
0

0 −1+i
√

3
2

)
.
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First Lyapunov stability theorem

Two complex conjugated eigenvalues

(
x1

x2

)
=

(
2 −1− i

√
3

2 −1 + i
√

3

)(
y1

y2

)
,(

ẏ1

ẏ2

)
=

(
−1+i

√
3

2
0

0 −1+i
√

3
2

)(
y1

y2

)
+ O(y2).

L(y) = y1y 1 + y2y 2,

L̇ = −1 + i
√

3

2
|y1|2 −

1− i
√

3

2
|y1|2 −

1− i
√

3

2
|y2|2 −

1 + i
√

3

2
|y2|2 + O(y3),

L̇ = −|y1|2 − |y2|2 + O(y3).
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The multidimensional case

Let the f (x) be such that f (x) ∈ C1. Define a matrix:

A ≡
(
∂fk
∂xl

)∣∣∣∣
x=0

.

Suppose λk , k = 1, 2, . . . , l , l ≤ n are given order eigenvalues
of the matrix A.
Then ∃T such that:

T−1AT = diag(Λ) + Bε,

where diag(Λ) is diagonal matrix, where Λ = {λ1, . . . , λl} are
the diagonal elements taken with their orders and Bε is a
nilpotent matrix with one sup-diagonal coefficients less than
given ε.
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First Lyapunov stability theorem

Lyapunov function

Define x = Ty, then

d

dt
y = (diag(Λ) + Bε)y + O(y2).

L(y) = (y, y),

then
d

dt
L(y) = (ẏ, y) + (y, ẏ) = 2

∑
k

<(λk + bk)|yk |2 + O(y3).

Define λ = mink(|<(λk)|), then

d

dt
L(y) < −(λ− ε)L(y).

Then y = 0 is stable equilibrium, hence x = 0 is stable
equilibrium also.
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The Lorenz system
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Origin:

∂v

∂t
+ v∇v = −∇p

ρ
+ µ∆v + g ,

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

∆ =
∂2

∂x2
+

∂2

∂y 2
+

∂2

∂z2

First coefficients of the Fourier series yield:

ẋ = σ(y − x), ẏ = x(ρ− z)− y , ż = xy − βz .

Here β, σ, ρ are parameters of the
mathematical model.
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First Lyapunov stability theorem

Properties of the solution

Change the variable:z = ρ− w ,

ẋ = σ(y − x), ×x/σ
ẏ = xw − y , ×y
ẇ = xy − βw + βρ. × w ,

1

2

d

dt
(
x2

σ
+ y 2 + w 2) = xy − x2 − y 2 − βw 2 + βρ,

1

2

d

dt
(
x2

σ
+ y 2 + z2) = −(x − y

2
)2 − 3

4
y 2 − β(w − ρ

2
)2 +

1

4
βρ2.

Corollary. All trajectories tend into the ellipsoid:

(x − y

2
)2 +

3

4
y 2 + β(w − ρ

2
)2 =

1

4
βρ2.
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First Lyapunov stability theorem

The divergence
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Consider a vector field:

f = (σ(y − x), x(ρ− z)− y , xy − βz),

div(f ) ≡ ∂

∂x
f1 +

∂

∂y
f2 +

∂

∂z
f3,

div(f ) = −σ − 1− β.

Then the phase space contracts.
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First Lyapunov stability theorem

Existence of attractor
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Corollary

One or several attractors are contained in the ellipsoid:

(x − y

2
)2 +

3

4
y 2 + β(w − ρ

2
)2 =

1

4
βρ2.
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Stationary points
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σ(y − x) = 0,

x(ρ− z)− y = 0,

xy − βz = 0.

(0, 0, 0)

(
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1),

(−
√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1).
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Behaviour at (0, 0, 0)
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A =

−σ ρ 0
σ −1 0
0 0 −β


λ1 = −

√
σ2 + (4ρ− 2)σ + 1 + σ + 1

2
,

λ2 =

√
σ2 + (4ρ− 2)σ + 1− σ − 1

2
,

λ3 = −β.
The stability condition:

(σ + 1) >
√
σ2 + (4ρ− 2)σ + 1

2 > 4ρ− 1,⇒ ρ < 1.
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First Lyapunov stability theorem

Behaviour at ((
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1)
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Pictures
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