
Soliton generation by local resonance interaction

S.G. Glebov,
Ufa State Petroleum
Technical University,
E-mail: sg@anrb.ru

O.M. Kiselev,
Institute of Mathematics

USC of RAS,
E-mail: ok@ufanet.ru

V.A. Lazarev,
Ufa State Petroleum
Technical University,
E-mail: lazva@mail.ru

1



The propagation of the optical waves in fibers without

of distortion for the envelope is one of main problems

for the nonlinear optics. The distortion of the envelope

appears due to the dispersion, nonlinearity and dissipa-

tion. The dissipation control is a separate topic and we

do not discussed here.
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The dispersion and nonlinearity are opposed by each

other. The dispersion leads to go to the pieces of the

packet and the nonlinearity tends to gather the packet.

In a special case there exists a magic relation between

the typical scales of the packets such as the amplitude

and length of the wave in the packets. In this case the

envelope of the wave packet is solution of the Nonlinear

Shŕ’odinger equation. There was founded by Kelley, Ta-

lanov and Zakharov in 1964-65 years. Later the nonlinear

Shródinger equation was integrated by inverse scattering

transform (Zakharov and Shabat 1971). The Nonlinear

Schŕ’odinger equation have a special solutions called by

solitons which propagate without the distortion of the

shape.
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The solitary packets of waves would be more suitable

for communication in optical fibers on a large distance if

one can control the parameters of the envelope function

for such packets.



It is well known two ways for making a solitary pack-
ets of waves. One of them is a spontaneous genera-
tion from an initial profile of the wave pocket. Such
method for the soliton generation used the asymptotic
behaviour of the soliton equations such as the Nonlinear
Shŕ’odinger equation. The solitonic envelope is formed
as an asymptoic limit for the long time. This fact was
opened by Manakov, Ablowitz very soon as the NLSE
was integrated in 1973.

Another one way is using the transverse instability of
the waves in the nonlinear medium. The instability was
founded by Kadomtsev and Petviashvily for the waves in
plasma (1973). The same mechanism of the instability is
used for the making the solitonic profile in the nonlinear
equations.

One of the main difficulty for the making solitonic pro-
files for the envelope of wave packets is controlling of
the parameters for the solitons. Both of the ways for the
making of solitons as an envelope of the wave packets
using the initial data for obtaining of the needed result.
It is known that the solitons are unstable with respect
to the initial data. The parameters of the solitons de-
fined the position and the velocity soliton. So to make
the soliton with fixed parameters one need to solve the
instable problem with respect to the initial data.

It is easy to see the parameters of such self-generated
solitons are predictable with difficulty in practice. It is
explained by an instability of the parameters for solitons
with respect to initial data.
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We demonstrate a new approach for the making of the

solitary packet of waves with solitonic envelope. The

main idea is to use the small perturbation to control for

the process of making the solitons.

In our approach the wave packets appear due to a slowly

passage of the external driving force through the reso-

nance. After the resonance the envelope function of the

wave packet is determined by the nonlinear Schrödinger

equation (NLSE). In the most important cases the en-

velope function is a sequence of solitary waves which

are called solitons. The wave packets with the solitons

as the envelope function are propagated without a dis-

sipation. The parameters of the solitons are obviously

defined by the value of the driving force on a resonance

curve. We demonstrate this phenomenon for the per-

turbed nonlinear Klein-Gordon equation.
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Statement of the problem

Let us consider the Klein-Gordon equation with a cubic

nonlinearity

∂2
t U − ∂2

xU + U + γU3 = ε2f(εx) exp

{
i
S(ε2t, ε2x)

ε2

}
+c.c..

(1)

Here 0 < ε ¿ 1, γ = const; f(y) is smooth and rapidly

vanishes as y → ±∞. The function S(y, z) and all deriva-

tives with respect to y, z are bounded. Here and below

we use the following notations

xj = εjx, tj = εjt, j = 1,2;

l(t2, x2) ≡ (∂t2S)2 − (∂x2S)2 − 1.

We will construct a special asymptotic solution of equa-

tion (1) such that:

U ∼ −ε2
f

l
exp(iS(t2, x2)/ε2) + c.c.. (2)

when l < 0.
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Numeric simulations

To illustrate the obtained result we consider equation (1)
with γ = 2 and the simplest driving force, where

S =
t22
2

, f =
2
√

2√
π cosh(2x1)

. (3)

This picture shows the generation of the solitary packet
of waves for equation (1) with special right-hand side(3),
and at ε = 0.1. Initial conditions are

U |t=0 = −ε2f exp(iS/ε2)|t=0,

∂tU |t=0 = −ε2∂t(f exp(iS/ε2))|t=0.

The resonant curve is t = 100.
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This picture shows a profile (U(x, t)|x=0)of the packet.

In this case the curve of the local resonance is the line

t2 = 1. The pre-resonant solution has the form:

U ∼ −ε2

(t2 − 1)

2
√

2√
π cosh(2x1)

cos(it22/ε2), 0 < t2 < 1.

In the domain t2 > 1 the solution has the form:

U ∼ ε exp{iϕ(x2, t2)/ε2}Ψ(x1, t1, t2) + c.c.

Here ϕ = t2 − 1/2. The function Ψ(x1, t1, t2) is the

solution of the Cauchy problem for the NLSE:

2i∂t2Ψ + ∂2
x1x1

Ψ + 2|Ψ|2Ψ = 0,

Ψ|t2=1 =

√
2(1 + i)

cosh(2x1)
.
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Asymptotic analysis

All domains where we construct the solution is separated

on three pairwise joint domains. The pre-resonant do-

main corresponds the forced oscillations with the ampli-

tude of the order ε2. This oscillations break down when

the driving force becomes resonant. The resonant layer

is a thin domain near the resonant curve l(x2, t2) = 0. In

this layer the amplitude of the oscillations increases up to

the order ε. In the post-resonant domain the amplitude

of the solution stabilizes on the order of ε.

9



Pre-resonant expansion

In the domain −l À ε the formal asymptotic solution of
equation (1) modulo O(εN+1) has the form

U =
N∑

n≥2

εnUn(t, x, ε), (4)

where

Un =
∑

k∈Ωn

Un,k(t2, x2, εx) exp

{
ik

S(t2, x2)

ε2

}
.

The set Ωn for the higher-order term is described by the
formula

Ωn =





{±1}, n ≤ 5;

{±1,±3, . . . ,±(2l + 3)}, l =
[
(n− 6)/4

]
, n ≥ 6.

The functions Un,k and Un,−k are complex conjugated.

The coefficients of the asymptotics Un,k are defined out
of algebraic equations

U2,1 = −f

l
, (5)

U3,1 = 2i
∂x1f∂x2S

l2
, (6)

U4,1 =
2if [∂t2S∂t2l − ∂x2S∂x2l]− 4(∂x2S)2∂2

x1
f

l3
−

2i∂t2f∂t2S + ∂2
x1

f + i∂2
t2

Sf

l2
, (7)
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In this section we obtain the WKB-type of the asymp-

totic expansion which is valid before the resonance layer.

This piece of the solution one can see on the following

picture:
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Resonant expansion

This part contains the asymptotic construction of the so-
lution for equation (1) in the neighborhood of the curve
l = 0. The domain of validity of this asymptotics in-
tersects with the domain of validity of expansion (4).
These expansions are matched.

In the domain |l| ¿ 1 the formal asymptotic solution for
equation (1) modulo O(εN+1) has the form

U =
N∑

n≥1

εnWn(t1, x1, t2, x2, ε), (8)

where

Wn =
∑

k∈Ωn

Wn,k(x2, t2, x1, t1) exp

{
ik

S(t2, x2)

ε2

}
, (9)

The function Wn,1 is a solution of the problem for dif-
ferential equations like the equation for the coefficient
W1,1(x1, t1, x2, t2), which is defined by first order partial
differential equation:

2i∂t2S∂t1W1,1 − 2i∂x2S∂x1W1,1 − λW1,1 = f,

with a given asymptotic behaviour:

W1,1 ∼
−f

λ
, λ → −∞.

Here λ = l/ε.

The asymptotic behaviour of W1,1 as λ → ∞ allows to
relate the formulas (2) and (12).
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The equation for W1,1 may be written in the form of first

order ordinary differential equation along the character-

istic direction:

d

dσ
W1,1 + λW1,1 = f.

Such ordinary equation appears under studying of slowly

passage through resonance for a one-dimensional oscil-

lator with slowly varying frequency by Kevorkyan. The

solution of equations of such type defines by Fresnel in-

tegrals.

When k 6= 1 Wn,k is the solution of algebraic equation.

The functions Wn,k and Wn,−k are complex conjugated.

We obtain:

U(x, t, ε) ∼ εW1,1(x1, t1, x2, t2) exp{iS/ε2}+ c.c..

There is an essential difference between asymptotics (8)

and external pre-resonance asymptotics (4). In the first

place the leading-order term in (8) has an order ε while

the leading order term in (4) has an order ε2. In the

second place the coefficients of asymptotics (8) depend

on fast variables x1 = x2/ε and t1 = t2/ε.
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The resonant layer contains the strip where the solution

increases due to the local resonance. This piece of the

strip is shown on the following figure:
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Post-resonant expansion

In the domain l À ε the formal asymptotic solution of

equation (1) modulo O(εN+1) has a form

U(x, t, ε) =
N∑

1

εn
n−2∑

k=0

lnk(ε)×

×
( ∑

±ϕ

exp{±iϕ(x2, t2)/ε2}Ψn,k,±ϕ(x1, t1, t2) +

∑

χ∈K′
n,k

exp{iχ(x2, t2)/ε2}Ψn,k,χ(x1, t1, t2)

)
. (10)

Here the function ϕ(x2, t2) satisfies the eikonal equation

(∂t2ϕ)2 − (∂x2ϕ)2 − 1 = 0 (11)

and initial condition on the curve l = 0:

ϕ|l=0 = S|l=0, ∂t2ϕl=0 = ∂t2S|l=0.

The leading-order term of the asymptotics is a solution

of the Cauchy problem for the nonlinear Schrodinger

equation

2i∂t2ϕ∂t2Ψ1,0,ϕ + ∂2
ξ Ψ1,0,ϕ + i[∂2

t2
ϕ− ∂2

x2
ϕ]Ψ1,0,ϕ +

γ|Ψ1,0,ϕ|2Ψ1,0,ϕ = 0,

Ψ1,0,ϕ|l=0 =
∫ ∞
−∞

dσf(x1) exp(i
∫ σ

0
dχλ(x1, t1, ε)),
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where ξ is defined by

dx1

dξ
= ∂t2ϕ,

dt1
dξ

= ∂x2ϕ.

The coefficients Ψn,k,±ϕ are determined from Cauchy

problems for linearized Schródinger equation. The coef-

ficients Ψn,k,χ, χ ∈ K′
n,k are determined from algebraic

equations. The set K′
n,k = Kn,k\{±ϕ}. The phase set

Kn for the n−th order term of the asymptotics as λ →∞
is determined by formula

K1 = ±ϕ; K2 = ±ϕ,±S,

Kn = ∪j1+j2+j3=nχj1 + χj2 + χj3, , χjk ∈ Kjk.

At last the post-resonant expansion has the following:





Higher-order terms and matching

The structure of constructed asymptotic solution when

l < 0 and l > 0 are sufficiently different. We concentrate

on the description of the changing of the solution from

the pre-resonant to post-resonant form. This transition

takes place in the thin layer near the curve l = 0. In this

transition layer the amplitude of the solution increases

due to the resonant pumping. The value of the ampli-

tude is defined by the width of the resonant layer. We

found the width of the layer by construction and analysis

of the higher-order terms of the asymptotic solution in

all domains. This analysis looks very complicated but it

is necessary to match the asymptotics of the solution in

different domains and obtain formula (13). This formula

defines the leading order term of the solution after the

slowly passage through the resonance.
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Main result

Let us formulate the main result of the work. If the

solution of (1) has the form

U ∼ −ε2
f

l
exp(iS(t2, x2)/ε2) + c.c.,

when l < 0, then in the domain l > 0 this asymptotic

solution is

U(x, t, ε) ∼ εΨ(x1, t1, t2) exp{iϕ(x2, t2)/ε2}+ c.c. (12)

The phase function ϕ satisfies the eikonal equation

(∂t2ϕ)2 − (∂x2ϕ)2 − 1 = 0

with conditions

ϕ|l=0 = S|l=0, ∂t2ϕ|l=0 = ∂t2S|l=0.

The envelope function of the leading-order term is a

solution of the nonlinear Schródinger equation

2i∂t2ϕ∂t2Ψ + ∂2
ξ Ψ + i[∂2

t2
ϕ− ∂2

x2
ϕ]Ψ + γ|Ψ|2Ψ = 0,

where the ξ is defined by

dx1

dξ
= ∂t2ϕ,

dt1
dξ

= ∂x2ϕ.

The initial condition for Ψ is

Ψ|l=0 =
∫ ∞
−∞

dσf(x1) exp(i
∫ σ

0
dµλ(x1, t1, ε)), (13)

The integration in this integral is done in the character-

istic direction related with the equation for W1,1.
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Nonlinear Schrödinger equation (NLSE) is a mathemati-

cal model for wide class of wave phenomenons from the

signal propagation in optical fiber to the surface wave

propagation. This equation can be considered as an ideal

model equation. Here we consider the NLSE perturbed

by the small driving force.

i∂tΨ + ∂2
xΨ + |Ψ|2Ψ = ε2feiS/ε2, 0 < ε ¿ 1. (14)

The following picture shows the scattering process of

one soliton to two solitons for equation (14), where am-

plitude of external force ε = 0.1, S = 0.005t2,

f = 2
√

2cosh−1(0.2x)+2
√

2exp(0.2ix) cosh−1(0.2x−5)+

2
√

2exp(−0.2ix) cosh−1(0.2x + 5),

initial data is pure soliton of NLSE at

Ψ|t=−200 = 0.2
√

2cosh−1(0.2x),

resonance curve is t = 0.
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For numeric justification of our results we obtain the an-
nihilate of the soliton on a local resonance. In this sec-
tion we justify our asymptotic formula for the NLSE. Let
us consider the pure soliton initial condition for equation
(14):

Ψ(x, t, ε)|t=t0 =
2
√

2εη exp{−i2cεx− 4(c2 − η2)t0ε2}
cosh(2ηεx + 8cηε2t0 + s)

According of our analytical results this initial condition
leads to one soliton solution as the leading-order term
of the asymptotic solution:

1
u (x1, t2) =

2
√

2η exp{−i2cx1 − 4i(c2 − η2)t2}
cosh(2ηx1 + 8cηt2 + s)

.

This soliton propagates up to the resonance curve t = 0.

To annihilate this soliton on the resonance curve one
may choose the specific form of the amplitude of the
perturbation. This form of the perturbation is defined
by the formula:

0 =
1
u (x1,0) + (1− i)

√
πf(x1).

Hence

f(x1) =
−(1 + i)

2
√

π

1
u (x1,0) =

−(1 + i)√
π

√
2η exp{−i2cx1}
cosh(2ηx1 + s)

To illustrate this by numerical simulations we choose
ε = 0.1, η = 1, s = 0, c = 0, t0 = −200. Then the original
equation (14) has the form

i∂tΨ + ∂2
xΨ + |Ψ|2Ψ = 0.01f exp{i0.005t2}.
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Initial condition is

Ψ|t=−200 =
0.2

√
2

cosh(0.2x)
,

and amplitude of the perturbation is

f =
−(1 + i)√

π

√
2

cosh(0.2x)

The numerical simulations of annihilation process for

soliton of NLSE are presented on the following figure.

This justifies the formulas obtained above by matching

method.
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