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Short Intro

I In this work formal mathematical rules are mainly based
on rules for a championship of computer players for Agar
IO
game on a platform aicups.ru organized by MailRu Group
https://github.com/MailRuChamps/miniaicups/tree/master
/agario.

I Hints for a strategy one can see in the paper by A.
Dichkovskii, his robot is a champion of these competitions
see A.Dichkovskii, https://habr.com/ru/post/420737.

I Review of problems of swarms control one can find in
L.Bayindir, A review of swarm robotics tasks,
Neurocomputing, 2015.
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Typical obstacles for the swarm control

I A lot of typical objects is located in the phase space.

I The phase space has a lot of dimensions.

I The best strategy for the swarm is not the best for each
of the swarm objects.

I One needs a lot of computing in real-time.

I The computational and memory limitations are ordinary
for the swarm control.
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Objects

I A swarm consists of N uniform objects.

I Any object be determined by a set of configuration
parameters X ∈ X ⊂ Fn, where F is a set of double
float numbers

I Internal parameters Y ∈ Y ⊂ {Nl × Fm}.
I Control vector u ∈ U , where U is a set of allowed values

for the control vector.

Assume that the configuration space has a metric.
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Clusters

The objects, which are situated near each other on a distance
R during more than k control times, combine into a cluster.
The cluster is a consistent object in the space {X ,Y}.
The number k of unit objects, joined into the cluster, is one of
components of the internal parameters Y(1) = k .
An information about the environment in the configuration
space is allowable for the cluster on the distance not more
than ρ = ρ(k), where k is a number of the units, which joint
into the cluster. For the unit object Y(1) = 1.
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Phase and configuration spaces

The configuration space

The phase space

The projection
of the claster

Figure: The phase space is X ∪ Y. The left objects of the swarm
can join in a cluster and one object on the right is along.
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Swarm control

Let the control be a discrete, then sequence of steps one can
consider as a reflection of the set X into themselves:
{Xi+1,Yi+1} = F(Xi,Yi, ui), i ∈ {1, . . . , I}, I ∈ N. A
computational complicity of the reflection will be defined as
N(F).
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The prize set

The polygon contains a prize set.
When any of the swarm unit has arrived to a point of the prize
set of the configuration space B ∈ X . The swarm gets some
prize points.
Define an objective function to obtain maximal points over I
steps of the game.
The prize points are added for the whole swarm. There fore
for any object of the swarm such game is cooperative with
non-zero sum.
Assume that κ competitive swarms present in the configuration
space. The game for such swarms are non-cooperative.
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The penalty set

In case of collision of clusters of competitive swarms the bigger
cluster absorbs the smaller one.
Thus a penalty set appears in the configuration space like
Pi ∈ X . This set Pi ∈ X changes locations and properties on
different step i . This set contains intervals of the configuration
space, where the clusters, bigger than clusters of swarm 1 are
located, which can hit into this set.
The configuration space contains not only a penalty set, but
also an additional prize set B̃i ∈ X . This set is contained by
smaller clusters of competitive swarms, than clusters of swarm
1, which can hit into the intervals of B̃i .
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The target function

Let us assume suboptimal algorithm, which maximizes a target
function of swarm 1 after q steps the control.
Define by bi a number of the prize points of swarm 1 on i step
and the penalties define by pi , then one constructs the target
function as follows:

Hi ,q =

i+q∑
k=i

(bk − pk).

It is important to say that the target function is not smooth.
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Cluster dynamics

As a control we choose a point in the configuration space,
which will be a target point for all objects of swarm 1. Besides
we assume that the movement speed to the target of single
cluster depends on its size. During one step smaller clusters
move faster than the bigger one.
If the cluster consists of n objects (n > 1), this cluster can be
divided in two clusters with n1 and n2 objects with given
proportionality. For example in case of division on two halves
one gets n1 + n2 = n and n1 = [n/2]. New clusters obtain
properties for internal parameters Y over rules:
Yi+1|Y(1)=n1

= G1(Yi), Yi+1|Y(1)=n2
= G2(Yi). If the target

point lies in the linear span of the swarm, the diameter of the
linear span decreases step-by-step. If this process lasts l steps
and l > k for some given k , then the clusters merge in one
bigger cluster.
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Compression and stretching

The target
point.

The linear span

The target point.
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Figure: On the left picture the target point lies in the linear span of
the swarm. On the right one the target point lies out of the span.

A sequences of the stretching and compression produce the
mixing of the swarm in the phase space and growing the
perimeter of the linear span.
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The computing complexity

Let us consider a case without competitive swarms. Define the
measure of the allowable control points by p = mes(U). The
computational complexity of target function for object of the
swarm alone:

N(Hpq) = O(Nq(F)) ≡ O(nq).

Here n = N(F).
A brute-force search of strategies on one step of control is
O(np). The computational complexity grows polynomially for
the search of strategies for q steps of the control:

C = O((np)q).
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The partial searching on the grid

I A part of components for the control vector uk belongs to
set U . Really, it is too large for brute-force searching over
all U .

I We consider partial searching on the grid in the phase
space for the swarm objects and for the control points.
On such grid we search a maxima for the target function.
Then in the ball with a center in this conditional maxima
we take smaller grid and search the maxima again.

I Let us define the quantities of the points in the grid of k
level by pk . Then the iterative process has the
computational complexity as follows:

Ckr = O((npk)rq),

where r is the number of iterations of localisation.
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Brute force and partial searching

Brute force

Partial searching on the grid

Figure: The projection on the brute force grid is shown on the top.
The partial search grid is shown on the bottom. Such approach
leads to sub optimal position.
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The complexity for the competitive swarms

If there exists the competitive swarms, then the computational
complexity of target function for an object of swarm 1 grows
due to knowing object parameters of competitive swarms, for
which the linear span contains given object of swarm 1.
A construction of the linear span using grids and following
localization looks as a process stated before. The
computational complexity can be estimated as follows:

ckr = O((snpk)rq),

where s is a number of competitive swarms. The
computational complexity for non-cooperative games with s
competitive swarms for searching the suboptimal control on
grid decreases in r times with pk points and for q steps of the
control:

C s
kr = O((sn2p2

k)rq).
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Simplest conclusions

The complexity grows polynomially with respect to numbers of
the swarm objects and the controlled parameters.
The complexity grows exponentially with respect to the
numbers of the computed steps of the game.
The partial searching on the grid may be effective approach to
decrease the computational complexity.
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