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Preface The purpose of my talk is to show constructing of an uniform asymp-

totic solution of the Painlevé-2 equation:

V ′′ + 2V 3 + zV = α, when z →∞, α →∞. (1)
Beginning with works by P.Boutroux (1913, 1914) to the present day construct-

ing of asymptotic solutions for the Painlevé equations is a popular direction in a

nonlinear analysis. To prove this sentence I can mention the works by R. Haberman,

A.R. Its, N. Joshi, A.A. Kapaev, A.V. Kitaev, M. Kruskal, V.Yu. Novokshenov but

even this list is far from completeness.

We will be interested the in works concerning an elliptic asymptotics for Painlevé-

2 equation. The first asymptotics in this field was constructed by P.Bouroux.

More later, these asymptotics have been justified with a Monodromy-Preserve

Method (see review devoted to these problem by A.V. Kitaev in Usp. Mat. Nauk,

1994). But the asymptotics having been constructed are nonuniform with respect

to two parameters of the Painlevé-2 equation (z, α). At beginning of 20th century

M.Painlevé found that the nonlinear equations called Painlevé equations now may

be considered as some scaling limits from each other. Now this property of the

equations has been studied for solutions too. Main stream of this study direct

to the Monodromy-Preserve Method. This gives to us an formal description of

the solutions in the terms of monodromy data and allows to study the asymptotic

behaviour of the solution in some intervals of parameters (z, α), but not uniformly.

Naive statement of the problem It will be more convenient

to rewrite this equation in the form obtained after substitutions V = α2/3u, z =

α1/3t, ε = 1/α:

ε2u′′ + 2u3 + tu = 1, where 0 < ε � 1. (2)
Since the parameter ε is small we neglect the term ε2u′′ from the equation. Let

us consider an obtained cubic equation:

2u3 + tu = 1. (3)
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The discriminant of the equation (3) has the form:

D =
( t

6

)3
+

(1

4

)2
.

The discriminant D < 0 when t < t∗ and hence the cubic equation has three real

roots u1(t) < u2(t) < u3(t). If t > t∗ then D > 0 and the cubic equation has one

real and two complex conjugate roots. At t = t∗ = −3 2−1/3 the roots u1(t) and

u2(t) merge u1(t∗) = u2(t∗) = u∗ = −4−1/3.

Figure 1: The roots of the cubic equation.

When t < t∗ it is possible to construct a real formal solution of (2):

u(t, ε) =
∞∑

k=0
ε2k 2k

u (t) (4)

by taking as a leading term
0
u (t) any of roots uj(t).

Our goal is to construct a smooth asymptotic
solution of the equation (2) on a segment [t∗ −
a, t∗ + a], a = const > 0 with the leading term
0
u= u1(t) when t < t∗.

Qualitative analysis To understand a behaviour of the asymptotic

solution after the bifurcation point t > t∗ we will study the qualitative behaviour of
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the solutions for the differential equation with freezing coefficient. Let us consider

the equation:

ε2u′′ + 2u3 + Tu = 1. (5)
This equation has different phase portraits when T < t∗, when T = t∗ and when

T > t∗.

If T < t∗ then the phase portrait of the

equation (5) has three equilibrium u1

and u3 are stable and u2 is instable

equilibrium. We can see two separatrix loops

in this picture.

At T = t∗ the phase portrait of (5) has

two equilibriums. u∗ is instable and

u3 is stable. In this picture we see only

one separatrix. u∗ is a nonlinear

saddle point.

At last you can see the phase portrait of (5)

when T > t∗ In this case we see only

one equilbrium u3 and periodic trajectories.

Conclusion.The qualitative analysis for the equation with frozen

coefficient shows that asymptotic solution we construct will vary

slowly when t < t∗ and will fast oscillates when t > t∗.
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Asymptotic analysis Here we show the main result an asymptotic

analysis for uniform asymptotic of the Painlevé-2 equation.

When t < t∗ − a, (a = const > 0)

and (t∗ − t)ε−4/5 � 1 the asymptotic

solution with respect to mod(O(ε6)+

+O(ε6(t− t∗)
−13/2)) has the form

u(t, ε) = u1(t) + ε2 −2tu1(t)

(6u2
1(t) + t)4

+ ε4 2
u (t).

The last term of the formal asymptotic solution as t → t∗ − 0 can be written as:

2
u (t) = O((t− t∗)

−9/2).

When |t− t∗| � 1 the asymptotic solution is defined by two different types

of the formal asymptotic expansions. The

first one has the form

u(t, ε) = u∗ + ε2/5 0
v (τ ) + ε4/5 1

v (τ ). (6)

Here the variable τ is defined by the formula

τ = (t− t∗)ε
−4/5, the function

0
v (τ ) is

defined as the solution of the equation

Painlevé-1 (see R. Haberman, 1979):

d2 0
v (τ )

dτ 2
+ 6u∗

0
v2 + u∗τ = 0,

0
v (t) = −

√√√√√−τ

6
+ O(τ−2), τ → −∞.

The formula (6) is asymptotic solution with respect to mod(O(ε8/5τ 2) + O(ε8/5))

as 1 � −τ � ε−4/5.

The function
0
v (τ ) has poles of second order at some points τk, k = 0, 1, 2, . . ..

Near the poles the last term of the asymptotic solution can be written as

1
v (τ ) = O((τ − τk)

−4), as τ → τk.

The expansion (6) is suitable at ε−1/5|τ − τk| � 1. The formula (6) is asymptotic

solution with respect to mod(O(ε8/5) + O(ε8/5τ 2) + O(ε8/5τk(τ − τk)
−8)).

As τ →∞ the last term of the asymptotics is

1
v (τ ) = O(τ 9/4) + O

( τ 9/4

(τ − τk)4

)
as τ →∞ and τ 6= τk.
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The formula (6) is asymptotic solution with

respect to mod(O(ε8/5) + O(ε8/5τ 9/2)+

O(ε8/5τ
9/2
k (τ − τk)

−8)). The expansion

(6) is suitable as τ � ε−8/35 and

ε−1/5|τ − τk|τ−7/8
k � 1.

The second one, which is valid in the

neighborhoods |τ − τk||τk|1/5 � 1 of poles

τk of the function
0
v (τ ), reads as

u(t, ε) = u∗+
0
w (θ) + ε4/5 1

w (θ), (7)

where θ = (τ − τk)ε
−1/5. The main term is

(see also R. Haberman, 1979):

d2 0
w

dθ2
+ 6u∗

0
w2 + 2

0
w3 = 0, where

0
w (θ) =

−16u∗
4 + 16u2

∗θ
2
.

The last term of the formal asymptotics (7) at |θ| → ∞ can be written as
1
w (θ) =

O(θ2|τk|). The formula (7) is asymptotic solution with respect to mod(O(ε8/5) +

O(ε8/5θ4τ 2
k )).

The constructed special solution of the Painlevé-1 equation may

be represented as

0
v (τ ) ∼

√
τ P(4

5
τ5/4,1,g3) as τ →∞,

where P(S) is solution of Weierstrass equation. Hence the poles of
0
v (τ ) concentrate as τ →∞. Therefore the combined asymptotics is

satisfactory as long as τk � ε−4/5.

When (t− t∗)ε
−2/3 � 1 and t < t∗ + a the asymptotic solution with respect to

mod(O(ε2) + O(ε2(t− t∗)
−3/2)) has the fast oscillating behavior(Kuzmak, 1959):

u(t, ε) =
0
U (t1, t) + ε

1
U (t1, t).

Here the last term of the asymptotics (8) at t → t∗ + 0 can be written as:
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1
U (t1, t) = O((t− t∗)

−3/2).

The leading term of the asymptotic

solution satisfies the Cauchy problem:

(S ′)2(
0
U t1)

2 = −
0
U

4−t
0
U

2+2
0
U +E(t),

0
U |t1=0 = u∗.

Here t1 = S(t)/ε. The function E(t) is

defined by the equation∫ α(t)

β(t)

√
−x4 − tx2 + 2x + E(t)dx = π,

where α(t) and β(t) (α(t) > β(t))

are two real roots of the equation

−x4 − tx2 + 2x + E(t) = 0, other roots of this equation are complex.

The phase function S(t) is the solution of an equation :

T = S ′
√

2
∫ α(t)

β(t)

dx√
−x4 − tx2 + 2x + E(t)

.

Where T is the constant defined by the formula

T =

√
2C∗(k)

2|u∗|1/2
( 3

6− 2k2

)1/4
,

k ≈ 0.463 is the unique solution of the equation

∫ ∞
0

dy
−ky + k2 + 1

[(y − k)2 + 1]5/2
y5/2 = 0, and C∗(k) =

∫ ∞
0

dy√
y[(y − k)2 + 1]

.

Remark 1. The domains of validity of the algebraic asymptotic solution and

the asymptotic solution (6) intersect, so that these expansions match. The solution

of the Painlevé-1 equation defining the asymptotics (6) has infinite sequence of the

poles τk, k = 1, 2, . . . . Near all of these poles we match the asymptotic solutions

(6) and (7). As the number of the pole k → ∞ the domain of validity of this

combined asymptotics (6) and (7) intersects with the domain of validity for the fast

oscillating asymptotic solution (8). It allows to match the combined asymptotics

with the fast oscillating asymptotic solution.
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int/9902007

[11] D.C.Diminnie, R.Haberman. Slow passage through a saddle-center bifurcation.

J.of Nonlinear Science, 2000, v.10, pp.197-221

7



8


