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The Davey-Stewartson equation (DS-II)  is the well-known example of the
2+1 dimensional integrable equation:
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 This equation has the soliton solution (Arkadiev, Pogrebkov,
Polivanov,1989):
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We shall study the Cauchy problem with initial data in the form of the
perturbed soliton:
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where q1(z) is smooth function with a finite support and  e is small
positive parameter.
The main question: What’s happened with the perturbed soliton initial
data?



The perturbation of the scattering data
The scattering problem for the Dirac equation is associated with the DS-II
equation:
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The scattering data for the problem has two different parts:
the discrete part {k,m,n} and the continuous part:

b k t dz dz q z t kz( , ) ( , ) exp( ).= ∧ −∫∫
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For the pure soliton solution the scattering data has the form:

{ , , }; ( ) .k b k0 0 0 0µ η ≡
In the soliton case the solution of the boundary problem for the Dirac
system has a pole with respect to k in the point k=k0, and the system has a
decreasing at | |z → ∞  nontrivial solution.

Study the scattering data under perturbation . As the result we obtain
(Gadyl’shin, Kiselev 1996):
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   Q1,2 is some constants depending

on the perturbation.

Conclusion 1. The scattering data has nonsoliton structure under
perturbation of the pure soliton initial data.



The example. q iq z
1 0

= ( ) . Perturbation

parameter e=0.1, Q1=1. There is the
continuous part of the scattering data.

The question is: Why does the discreet part of the scattering data
disappear?

The eigenvalue problem

Consider the integral equation which is equivalents to the boundary
problem for the Dirac equation.

( [ , ]) ( ), ( ) (exp( ),exp( )).I G q k E kz where E kz diag kz kz− = =φ

The solution of this equation has the pole if the eigenvalue problem

( [ , ])I G q k− =φ λφ

has the nil of the eigenvalue: l=0.  Then the soliton and the nil of the
eigenvalue are associated with each other.

We studied this eigenvalue problem under perturbation of the q(z)
near the k=k0 locally. As the result we obtained (Gadyl’shin, Kiselev
1998), that the eigenvalue which is associated to the pure soliton function
is semisimple. Under the perturbation it decomposes to two simple
eigenvalues:
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 Locally we obtained that the λ
1

( )k  is the solution of the equation:
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Conclusion 2. The eigenvalue is not equal nil if  Q1 not equal to zero.

The example of the
perturbation for the
semisimple eigen-
value. (Q1 =1, The

scale order is e-1.
The parameter k-
ko  is lies on the
horizontal plane.
The figure is
shows the  eigen-
values as a func-

tion with respect to k- ko .  

The question is: What’s happened with the solution of the DS-II
equation?

The asymptotic solution as t=O(e-1)
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We obtained the asymptotic solution of the Cauchy problem for the DS-II
equation by the inverse scattering method. For this we solved the D-bar
problem:
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The solution for the DS-II equation has the following form:

q z t dp dp b k k z t iS( , ) ( ) ( , , ) exp( ).= ∧∫∫
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Using the form of the be(k) we obtain (Gadyl’shin, Kiselev 1997):
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Here µε µ πε= −0 2 2i tQ .  It is the influence of the perturbation.

Conclusion 3. The perturbation of the initial data changes the soliton
parameter m only.The soliton-like solution propagates without the
change of its shape at t=O(e-1).
The question is: What is meant the solitonless scattering data?

The long time asymptotics.

The nonsoliton solution for the  DS-II equation on a long time has the
form (Kiselev, 1996):
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Conclusion 4. The perturbed soliton solution disappear for  t>> e-1 .
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