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The Davey-Stewartson equation (DS-I1) is the well-known example of the
2+1 dimensional integrable equation:
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This equation has the soliton solution (Arkadiev, Pogrebkov,
Polivanov,1989):
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We shall study the Cauchy problem with initial datain the form of the
perturbed soliton:
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where g,(z) is smooth function with a finite support and 1, is small
positive parameter.




The perturbation of the scattering data
The scattering problem for the Dirac equation is associated with the DS |
eguation:
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The scattering data for the problem has two different parts.
the discrete part {k,Oc=»m“ and the continuous part:

b(k,t)= pmdszzq(z t)f exp(- kz)

For the pure soliton solution the scattering data has the form:
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In the soliton case the solution of the boundary problem for the Dirac
system has a pole with respect to k in the point k=k,, and the system has a
decreasing at z® ¥ nontrivial solution.

Study the scattering data under perturbation . As the result we obtain
(Gadyl’ shin, Kiselev 1996):
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where B 1(z) = Q12 IS some constants depending
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Conclusion 1. The scattering data has nonsoliton structure under
perturbation of the pure soliton initial data.




The example. q1 =iq0(z). Perturbation

parameter e=0.1, Q.=1. There is the
continuous part of the scattering data.

The eigenvalue problem

Consider the integral equation which is equivalents to the boundary
problem for the Dirac equation.

(1- G[q,k]Df =E(kz), where E(kz):diag(exp(kz),exp(E)).
The solution of this equation has the pole if the eigenvalue problem
(I- Glg,k])f =1 f

has the nil of the eigenvalue: 1=0. Then the soliton and the nil of the
eigenvalue are associated with each other.

We studied this eigenvalue problem under perturbation of the q(z)
near the k=kq locally. As the result we obtained (Gadyl’shin, Kiselev
1998), that the eigenvalue which is associated to the pure soliton function
IS semisimple. Under the perturbation it decomposes to two simple
eigenvalues:
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Locally we obtained that the | (k) isthe solution of the equation:

The example of the
perturbation for the
semismple  eigen-
vaue. (Q; =1, The
scale order is m_l
The parameter k-
k, 1slies on the
horizontal plane.
The figure is
shows the elgen-

values as a func-

tion with respect to k- k, .

The question is. What's happened with the solution of the DS
eguation?

The asymptotic solution as t=0(m )




We obtained the asymptotic solution of the Cauchy problem for the DS
eguation by the inverse scattering method. For this we solved the D-bar
problem:
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where S =-i(kz - kz) +2t(k2 +k 2).

The solution for the DS-I1 equation has the following form:

q(z.t) =;c‘ﬁipUd5 bo(K)Y 1, (K.2.t) exp(is).

Using the form of the b,(k) we obtain (Gadyl’ shin, Kiselev 1997):
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Here |, =M, - 2IPELQ, - It is the influence of the perturbation.

Conclusion 3. The perturbation of the initial data changes the soliton
parameter monly.The soliton-like solution propagates without the
chanoge of its shape at t=0(e™?).

The long time asymptotics.

The nonsoliton solution for the DSl equation on a long time has the
form (Kiselev, 1996):
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