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We consider a formal asymptotic solution of the main
resonance equation:

iεU ′ + (|U |2 − t)U = 1, 0 < ε � 1. (1)

This equation defines a behaviour of an nonlinear system
with cubic resonance and therefore it is one of major
equations for nonlinear studies. The equation has been
written in the form (1) which means the solution depend
on fast (t) and slow (εt) typical scales.

We investigate a saddle-center bifurcation for the slowly
varying equilibriums of this equation and construct a
matching asymptotic solution uniformly as ε → 0 be-
fore, inside and after the bifurcation layer.
This problem may be considered as a separatrix crossing
in confluent point. The passing through a separatrix of
the second order equations in a general position was con-
sidered by A.V. Timofeev in 1979, A.I. Neishtadt in 1986.
The separatrix crossing for the second order equations
in the confluent point was considered in a preliminary
fashion by R.Haberman in 1979 and D.C.Diminnie and
R.Haberman in 2000 in more detail. The asymptotic
solution crossing the separatrix in the confluent point
was constructed by O.M.Kiselev in 1999,2001 for the
Painlevé-2 equation.

Using our approach one can construct the uni-
form asymptotic solution crossing the separatrix
in the confluent point for second order equation
in general case.
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Algebraic analysis
Let us seek an asymptotic solution of (1) in the form of
the formal asymptotic series:

U(t; ε) =
∞
∑

n=0
εn n

U (t). (2)

After a natural supposition about boundedness of deriva-
tive in the equation (1) we obtain the nonlinear equation
for the main term of the asymptotic expansion:

|
0
U |2

0
U −t

0
U= 1. (3)

The number of the roots of this algebraic equation de-
pends on a parameter t. There exist a value of the
parameter t equals to t∗ = 3(1/2)2/3 so that the equa-
tion (3) has three real roots at t > t∗. At t = t∗ there is
one simple root and one multiple root U∗ = −(1/2)1/3.
At t < t∗ the equation (3) has the alone root.

What happened with the asymptotic solution of the equa-
tion (1) when two roots of the equation (3) coalesce?
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Qualitative analysis
To obtain an answer on the precision question one can
consider an autonomous equation with a ”frozen” coef-
ficient T :

iV ′ + (|V |2 − T )V = 1.

This equation has
three equilibrium po-
sitions T > t∗. There
are U1 < U2 < U3,
where U1 is a saddle,
U2 and U3 are centers.

At T = t∗ the saddle-
node bifurcation takes
place and there exist
center U3 and confluent
saddle-center point U∗.

When T < t∗ there ex-
ists along center U3.

3



Statement of the problem
We will construct the formal asymptotic solution of the
equation (1) in the interval t ∈ [t∗ − C, t∗ + C] where
C = const > 0 uniform on ε . We suppose that the
solution in the domain t > t∗ has the form

U(t, ε) =
∞
∑

n=0
εn n

U (t), where
0
U (t) = U2(t)

. The qualitative analysis shows that this asymp-
totic solution oscillates when t < t∗. Our prob-
lem is to study the transition layer between the
nonoscillating asymptotics when t > t∗ and the
oscillating asymptotics when t < t∗.

Numeric evaluations
The numeric evaluations for the special solution of the
equation (1) is given the picture:

4



Asymptotic analysis

In the domain (t− t∗)ε−4/5 � 1
the asymptotics has the form:

U(t, ε) =
∑∞

n=0 εn n
U (t).

Here
0
U (t) = U2(t) and corrections

n
U (t) are algebraic functions of t.
[R.Haberman, 1979]

In the domain |t− t∗| � 1
the asymptotics is defined by
four various expansions of dif-
ferent types. First of them is:

U(t, ε) = U∗ + ε2/5
∞
∑

n=0
ε2n/5

( n
α (τ) + iε1/5 n

β (τ)
)

, (4)

where τ = (t− t∗)ε−4/5. The leader term
0
α (τ) is a

special solution of the Painlevé-1 equation
[R.Haberman, 1979]:

0
α ′′ − 3

0
α2 + τ = 0,

with the given asymptotics as τ →∞:

0
α (τ) =

∑

n≥0
αnτ−

(5n−1)
2 , where α0 =

1√
3

, α1 =
1
24

.

In the domain τ > −∞ this solution has poles on the
real axis of τ . Denote the largest of them by τ0. The

asymptotics (4) is valid as (τ − τ0)ε−1/5 � 1.
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In the neighborhood of τ = τ0 the coefficients of the
asymptotic expansion depend on one more fast time
scale θ = (τ − τ0)ε−1/5. Denote by

θ0 = θ +
∞
∑

n=1
εn/5 n

θ0,

where
n
θ0= const. Then in the domain −ε−1/5 � θ0 �

ε−1/10 the formal asymptotic solution has the form [Kise-
lev,1999,2001]:

U(t, ε) = U∗+
0
w (θ0) + ε4/5

∞
∑

n=1
ε(n−1)/5 n

w (θ0).

The main term of asymptotics
0
w (θ0) is the separatrix so-

lution of the autonomous equation [R.Haberman, 1979]:

i
0
w ′+U∗

(

2| 0
w |2+ 0

w2
)

+U2
∗

(

0
w ∗− 0

w
)

+ | 0
w |2 0

w= 0, (5)

namely:
0
w (θ0) = −2

(θ0−iU∗)2
.

In the domain −θ0 � 1 the
asymptotic solution is defined
by a sequence of two alterna-
ting asymptotics. Let us call
them by ”intermediate” and
”separatrix” asymptotics. To
obtain the intermediate
asymptotics let us introduce
one more slow variable:

Tk = θk−1ε1/6, k = 1,2, . . . .
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An asymptotic solution in the intermediate domain for
not too large values k � ε−1/7 has the form:
U(t, ε) = U∗+ε1/3 ∑∞

n=0 εi/30
( n

Ak +iε1/6 n
Bk

)

. The leader
term satisfies to the equation [Diminnie& Haberman,
2000]:

0
Ak
′′ + 3

0
Ak

2 = 0

and can be expressed by the Weierstrass ℘-function:
0
Ak= −2℘(Tk; 0, g3(k)), g3(k) = 1

56

(

g3(k − 1) + π/2
)

.

Here g3(0) = a4
56, a4 is the

coefficient as (τ − τ0)4 in the

Laurent expansion of
0
α (τ).

The intermediate expansion
with the leader term
is valid in the domain
between two poles Tk = 0 and
Tk = Ωk of the℘-function:

−ε−1/6Tk � 1, ε−2/15(Tk + Ωk) � 1.

At the large values of k the intermediate asymptotics are
constructed in the form [Glebov& Kiselev, 2001]

U(t, ε) = U∗ + ε1/3 ∑∞
n=0 εn/6

( 5n
Ak +iε1/6 5n

B k
)

.

The main term satisfies:
0
A
′′
k +3

0
Ak

2 = λk, where

λk(ε) = ε1/6
( k

∑

j=1
Ωj +

∞
∑

n=1
ε(n−1)/30

k
∑

j=1

n
xj

+
)

.
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The main term of the asymptotics is:

0
Ak (Tk) = −2℘(Tk, λk/2, g3(k, ε)),

where g3(k, ε) =
0
g3 (k) +

∑∞
n=1 εn/30 n

g3 (k).
The intermediate expansion with the leader term is valid
in the domain between the poles of the Weierstrass func-
tion as

−ε−1/6Tk � 1, ε−2/15(Tk + Ωk) � 1.

The separatrix expansions are valid in a small neighbor-
hood of the Weierstrass function poles. Denote:
θk =

(

Tk + Ωk − 1
4

∑∞
n=1 εn/30 n

xk
+

)

ε−1/6, k = 1,2, . . . .

When |θk|ε1/6 � 1 the formal asymptotic solution of
equation (1) has the form [Glebov& Kiselev, 2001]:

U(t, ε) = U∗+
0

W (θk) + ε4/5
∞
∑

n=1
ε(n−1)/30 n

W (θk).

The leader term of the

asymptotics
0

W (θk) is a
separatrix solution of the
autonomous equation (5):
0

W (θk) = −2
(θk−iU∗)2

.

The sequence of the
alternating intermediate
expansions and separatrix
asymptotics is valid as ε−1/6(t∗ − t) � 1.
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In the domain (t∗ − t)ε−2/3 � 1 the asymptotic solution
breaks into oscillation. The amplitude of the stimulated
oscillations in the solution of (1) oscillates fast. The
form of the solution is:
U(t, ε) =

0
U (t1, t, ε) + ε

1
U (t1, t, ε) + ε2

2
U (t1, t, ε),

where t1 is a new fast vari-
able t1 = S(t)/ε + φ(t). The
main term of the symptotics
0
U lies on the curve Γ(t):
1
2|y|

4 − t|y|2 − (y + ȳ) = E(t),
and satisfies to the Cauchy
problem for the equation

iS′∂t1
0
U +(|

0
U |2 − t)

0
U= 1,

with an initial condition
0
U |t1=0 = u0, such, that Im(u0) =

0, Re(u0) = miny∈Γ(t)

(

Re(y)
)

. The function S(t) is a
solution for the Cauchy problem

iS′
∫

Γ(t)

dy
√

3y3 + (2E + t2)y2 + 2ty + 1
= T, S|t=0 = 0,

where T = const > 0. The function E(t) is the solution
of the transcendental equation [Kuzmak, 1959]:

i
∫

Γ(t)
u∗du = π

The phase shift φ is defined by initial problems for the
equation[Bourland& Haberman, 1988]:

φ′

∂ES
∂EI = φ1 = const, φ(t∗) = φ0.
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