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Outlines

This lecture is a review of our works concerning the generation

of solitons by resonance in nonlinear equations. Main subjects of

the review

• perturbed nonlinear equations;

• weak resonances;

• generation of solitons as envelope function for packet of waves;

• connection formulas for parameters of packets and exciting force.
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Let as consider the nonlinear Klein-Gordon equation with a cubic

nonlinearity as an example

∂2
t U − ∂2

xU + U + γU3 = ε2f(εx) exp
{

i
S(ε2t, ε2x)

ε2

}
+ c.c..

Here 0 < ε � 1, γ = const; f(y) is smooth and rapidly vanishes

as y → ±∞. The function S(y, z) and all derivatives are bounded.

Typical solution of this equation has a form of wave packet.

The wave packet propagate with distortion of envelope function in

ordinary case.
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Such distortion appears due to the dispersion, dissipation and

nonlinearity. The dissipation control is not discussed here. The

propagation of waves without distortion for the envelope is important
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for applications for exapmle in nonlinear optics.

The dispersion and nonlinearity oppose to each other. The

dispersion tends to spread the wave packet and the nonlinearity

tends to gather the packet. There exists a magic relation between

typical scales of the wave packet in some special cases. The envelope

of wave packet is a solution of the Nonlinear Schrödinger equation

(NLSE). It was found by Kelley, Talanov and Zakharov in 1964-65

years. Later NLSE was integrated by inverse scattering transform

method by Zakharov and Shabat in 1971.

The solitary packets of waves has a soliton of NLSE as the

envelope function. Such wave packets propagate without of

distortion on a large distance.
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The solitary packets of waves would be more suitable for

communication in optical fibers on a large distance if one can

control the parameters of the envelope function for such packets.
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Problems

• How to control the parameters of the envelope function for wave

packets?

• How to obtain the wave packet with the given parameters?
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There are some ways to obtain the solitary packet of waves.

• One of them is a spontaneous generation from an initial profile

of the wave packet. Such method for the soliton generation

used the asymptotic behaviour of the soliton equations. The

solitonic envelope is formed as an asymptotic limit for the long

time [Manakov, Ablowitz, 1973].

• Another way uses the transverse instability of the waves in the

nonlinear medium [Kadomtsev and Petviashvily, 1973].

• Later L. Friedland and A. Shagalov (1998) obtained a numerical

results for the autoresonant excitation of solitons.
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Generation of solitons by weak resonance

Here we demonstrate a new approach to generate the packets of

waves. We obtain this control due to small external perturbation.

Our approach is based on slow passage of the perturbation force

through the resonance. This way allows to generate the solitary

packets of waves and effectively control their parameters.

The term ”slow passage” through the resonance means passage

through a local resonance. What does it mean?
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Resonance

Consider the linear oscillator under periodic perturbation

..
x +2γ

.
x +ω2

0x = F0 cos ωt,

where F0 = const is the amplitude of the perturbation and ω =
const is the frequency of the perturbation.

The resonance phenomenon is well known. It is a standard

phenomenon when the amplitude of the solution increases under the

oscillating perturbation.
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Figure 1: Resonant increase of the amplitude for

γ = 0, F0 = 1, ω = ω0 = 1.

Let the frequency of the perturbation be ω = ω(εt) and there

exists the moment t0 such that ω0 = ω(εt0).
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Figure 2: Increase of the amplitude due to local resonance for

ω = −1 + εt, γ = 0, F0 = 1, ω0 = 1, ε = 0.1

The resonance of this type is usually called local or weak resonance.

The main effect consist in appearance of the correction term

of the order of
√

ε for the asymptotic solution after the passage

through the resonance domain.
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Generation of soliton on weak resonance

Let us consider the Klein-Gordon equation with a cubic

nonlinearity

∂2
t U − ∂2

xU + U + γU3 = ε2f(εx) exp
{

i
S(ε2t, ε2x)

ε2

}
+ c.c.. (1)

Here 0 < ε � 1, γ = const; f(y) is smooth and rapidly vanishes

as y → ±∞. The function S(y, z) and all derivatives are bounded.

Denote: xj = εjx, tj = εjt, j = 1, 2; l(t2, x2) ≡ (∂t2S)2 −
(∂x2S)2 − 1.
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We will construct a special asymptotic solution of equation (1)

such that:

U ∼ −ε2f

l
exp(iS(t2, x2)/ε2) + c.c.. (2)

when l < 0.
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Numeric simulations

In simplest case the generation of soliton looks like the follow

picture
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This picture shows the generation of the solitary packet of waves

for equation (1) with special perturbation.

This picture shows a profile (U(x, t)|x=0)of the packet.
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Asymptotic analysis

All domains where we construct

the solution is separated on three

pairwise joint domains. The

pre-resonant domain corresponds

the forced oscillations with the

amplitude of the order ε2.

This oscillations break down when the driving force becomes

resonant. The resonant layer is a thin domain near the resonant

curve l(x2, t2) = 0. In this layer the amplitude of the oscillations
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increases up to the order ε. In the post-resonant domain the

amplitude of the solution stabilizes on the order of ε.
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Pre-resonant expansion

In the domain −l � ε the formal asymptotic solution of equation

(1) modulo O(εN+1) has the form

U =
N∑

n≥2

εnUn(t, x, ε), (3)

where

Un =
∑

k∈Ωn

Un,k(t2, x2, εx) exp
{

ik
S(t2, x2)

ε2

}
.
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The set Ωn for the higher-order term is described by the formula

Ωn =

{
{±1}, n ≤ 5;

{±1,±3, . . . ,±(2l + 3)}, l =
[
(n− 6)/4

]
, n ≥ 6.

The functions Un,k and Un,−k are complex conjugated.

The coefficients of the asymptotics Un,k are defined out of

algebraic equations

U2,1 = −f

l
, (4)
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U3,1 = 2i
∂x1f∂x2S

l2
, (5)

U4,1 =
2if [∂t2S∂t2l − ∂x2S∂x2l]− 4(∂x2S)2∂2

x1
f

l3
−

2i∂t2f∂t2S + ∂2
x1

f + i∂2
t2

Sf

l2
, (6)
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In this section we obtain the WKB-type of the asymptotic

expansion which is valid before the resonance layer. This piece

of the solution one can see on the following picture:
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Resonant expansion

This part contains the asymptotic construction of the solution for

equation (1) in the neighborhood of the curve l = 0. The domain

of validity of this asymptotics intersects with the domain of validity

of expansion (3). These expansions are matched.

In the domain |l| � 1 the formal asymptotic solution for equation

(1) modulo O(εN+1) has the form

U =
N∑

n≥1

εnWn(t1, x1, t2, x2, ε), (7)

27



where

Wn =
∑

k∈Ωn

Wn,k(x2, t2, x1, t1) exp
{

ik
S(t2, x2)

ε2

}
, (8)

The function Wn,1 is a solution of the problem for differential

equations like the equation for the coefficient W1,1(x1, t1, x2, t2),
which is defined by first order partial differential equation:

2i∂t2S∂t1W1,1 − 2i∂x2S∂x1W1,1 − λW1,1 = f,

with a given asymptotic behaviour:

W1,1 ∼
−f

λ
, λ → −∞.
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Here λ = l/ε.

The asymptotic behaviour of W1,1 as λ →∞ allows to relate the

formulas (2) and (11).

The equation for W1,1 may be written in the form of first order

ordinary differential equation along the characteristic direction:

d

dσ
W1,1 + λW1,1 = f.

Such ordinary equation appears under studying of slowly passage

through resonance for a one-dimensional oscillator with slowly

varying frequency by Kevorkyan. The solution of equations of

such type defines by Fresnel integrals.
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When k 6= 1 Wn,k is the solution of algebraic equation. The

functions Wn,k and Wn,−k are complex conjugated.

We obtain:

U(x, t, ε) ∼ εW1,1(x1, t1, x2, t2) exp{iS/ε2}+ c.c..

There is an essential difference between asymptotics (7) and

external pre-resonance asymptotics (3). In the first place the

leading-order term in (7) has an order ε while the leading order

term in (3) has an order ε2. In the second place the coefficients of

asymptotics (7) depend on fast variables x1 = x2/ε and t1 = t2/ε.
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The resonant layer contains the strip where the solution increases

due to the local resonance. This piece of the strip is shown on the

following figure:
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Post-resonant expansion

In the domain l � ε the formal asymptotic solution of equation

(1) modulo O(εN+1) has a form

U(x, t, ε) =
N∑
1

εn
n−2∑
k=0

lnk(ε)×

×
( ∑
±ϕ

exp{±iϕ(x2, t2)/ε2}Ψn,k,±ϕ(x1, t1, t2) +

∑
χ∈K′

n,k

exp{iχ(x2, t2)/ε2}Ψn,k,χ(x1, t1, t2)
)

. (9)
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Here the function ϕ(x2, t2) satisfies the eikonal equation

(∂t2ϕ)2 − (∂x2ϕ)2 − 1 = 0 (10)

and initial condition on the curve l = 0:

ϕ|l=0 = S|l=0, ∂t2ϕl=0 = ∂t2S|l=0.

The leading-order term of the asymptotics is a solution of the

Cauchy problem for the nonlinear Schrodinger equation

2i∂t2ϕ∂t2Ψ1,0,ϕ + ∂2
ξΨ1,0,ϕ + i[∂2

t2
ϕ− ∂2

x2
ϕ]Ψ1,0,ϕ +

γ|Ψ1,0,ϕ|2Ψ1,0,ϕ = 0,
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Ψ1,0,ϕ|l=0 =
∫ ∞

−∞
df(x1) exp(i

∫ d

0

χl(x1, t1, ε)),

where ξ is defined by

dx1

dξ
= ∂t2ϕ,

dt1
dξ

= ∂x2ϕ.

The coefficients Ψn,k,±ϕ are determined from Cauchy problems

for linearized Schródinger equation. The coefficients Ψn,k,χ, χ ∈
K ′

n,k are determined from algebraic equations. The set K ′
n,k =

Kn,k\{±ϕ}. The phase set Kn for the n−th order term of the
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asymptotics as l →∞ is determined by formula

K1 = ±ϕ; K2 = ±ϕ,±S,

Kn = ∪j1+j2+j3=nχj1 + χj2 + χj3, , χjk
∈ Kjk

.

At last the post-resonant expansion has the following:

36



37



Higher-order terms and matching

The structure of constructed asymptotic solution when l < 0 and

l > 0 are sufficiently different. We concentrate on the description

of the changing of the solution from the pre-resonant to post-

resonant form. This transition takes place in the thin layer near the

curve l = 0. In this transition layer the amplitude of the solution

increases due to the resonant pumping. The value of the amplitude

is defined by the width of the resonant layer. We found the width

of the layer by construction and analysis of the higher-order terms

of the asymptotic solution in all domains. This analysis looks very

complicated but it is necessary to match the asymptotics of the
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solution in different domains and obtain formula (12). This formula

defines the leading order term of the solution after the slowly passage

through the resonance.
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Main result

Let us formulate the main result of the work. If the solution of

(1) has the form

U ∼ −ε2f

l
exp(iS(t2, x2)/ε2) + c.c.,

when l < 0, then in the domain l > 0 this asymptotic solution is

U(x, t, ε) ∼ εΨ(x1, t1, t2) exp{iϕ(x2, t2)/ε2}+ c.c. (11)
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The phase function ϕ satisfies the eikonal equation

(∂t2ϕ)2 − (∂x2ϕ)2 − 1 = 0

with conditions

ϕ|l=0 = S|l=0, ∂t2ϕ|l=0 = ∂t2S|l=0.

The envelope function of the leading-order term is a solution of the

nonlinear Schródinger equation

2i∂t2ϕ∂t2Ψ + ∂2
ξΨ + i[∂2

t2
ϕ− ∂2

x2
ϕ]Ψ + γ|Ψ|2Ψ = 0,
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where the ξ is defined by

dx1

dξ
= ∂t2ϕ,

dt1
dξ

= ∂x2ϕ.

The initial condition for Ψ is

Ψ|l=0 =
∫ ∞

−∞
df(x1) exp(i

∫ d

0

µl(x1, t1, ε)), (12)

The integration in this integral is done in the characteristic direction

related with the equation for W1,1.
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Nonlinear Schrödinger equation (NLSE) is a mathematical model

for wide class of wave phenomenons from the signal propagation in

optical fiber to the surface wave propagation. This equation can be

considered as an ideal model equation. Here we consider the NLSE

perturbed by the small driving force.

i∂tΨ + ∂2
xΨ + |Ψ|2Ψ = ε2feiS/ε2

, 0 < ε � 1. (13)
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Generation of soliton

i∂tΨ + ∂2
xΨ + |Ψ|2Ψ = ε2f exp{iS/ε2}, 0 < ε ≤ 1.
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Generation of soliton

Theorem 1. One phase asymptotic solution of the order of O(ε2)
in the domain t � −ε−1 will have the order of O(ε) in the domain

ε−1 � t ≤ Kε−2, K = constant > 0. The leading-order term of

the asymptotics

Ψ = ε
0
u +O(ε2)

is determined from the Cauchy problem for NLSE

i
0
ut2 +

0
ux1x1 +| 0

u |2 0
u= 0,

0
u |t2=0 = (1− i)

√
πf(x1).
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Generation of soliton
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Annihilation of soliton

For numeric justification of our results we obtain the annihilate

of the soliton on a local resonance.
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Finite amplitude waves

We consider the forced Boussinesq equation

Utt−Uxx+a(Ux)2x+εγUxxxx = ε2f(εx) exp{iS(ε2x, ε2t)/ε2}+c.c.

We investigate the simplest case S = S(ε2t) = (ε2t)2/2.

Resonance takes place on the curve t = 0.
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