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Motivation

Parametric driven non-linear oscillator

A typical example of the system with parametric autoresonance is a

pendulum with oscillating suspension:

u′′ + (1 + 4µ cos(Ω(t, µ)t) sin(u) = 0, 0 < µ� 1 (1)

where frequency of the perturbation Ω slowly decreases:

Example

Ω(t, µ) = 2− µ2λ2t

Here λ is additional parameter of perturbation.
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Motivation

Linear approximation

For amplitude of order µ such as u = µv one obtains a perturbed Mathieu

equation:

v ′′ + (1 + 4µ cos(Ω(t, µ)t))v + µ2f (v , t, µ) = 0,

f (v , µ) = µ−2(sin(µv)− µv)(1 + 4µ cos(Ω(t, µ)t)) = O(1).

For unperturbed Mathieu equation one can see intervals of resonant

frequencies.

The primary resonance takes place near Ω = 2.
At the resonance frequencies solutions exponentially grows. But for

nonlinear equation like equation for pendulum such growth can't be for

long period. The solution grows up O(
√
µ).
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Motivation

u′′ + (1 + 4µ cos(Ωt)) sin(u) = 0

Ðèñ.: Typical trajectory for nonlinear
parametric resonance Ω = 2.
Perturbation parameter µ = 0.01,
amplitude of oscillations 0.5

Ðèñ.: Trajectory of parametric
autoresonance driven pendulum
Ω = 2− µ2λ2t. Amplitude of oscillations
grows up to separatrix of of pendulum
(1.5).
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Parametric autoresonance

Parametric autoresonance

To �nd asymptotic solution of order
√
µ which is suitable over ling time we

assume:

u =
√
µA(τ) exp(it) + µ3/2U(t, µ) + c .c .,

τ = µt is slow time,

�rst term de�nes modulated oscillations with slow varying amplitude

A(τ),

second term de�nes a reminder,

c .c . de�nes complex conjugated terms.
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Parametric autoresonance

u =
√
µA(τ) exp(it) + µ3/2U(t, µ) + c .c .,

Let us substitute this formula into equation for perturbed pendulum. As a

result we obtain in order of µ3/2:

U ′′ + U ∼ −2iA′e it +
1

2
|A|2Ae it − 2Ae it+iωτ +

1

6
A3e3it + 2Ae3it+iωτ + c .c ..

Here one can see three resonant terms

−2iA′e it this term appears due to assumption about slow varying

amplitude of oscillations.

1
2 |A|

2Ae it this term de�nes a nonlinearity of pendulum.

−2Ae it+iωτ this term appears here due to parametric perturbation of

the pendulum.

An exception of these terms from equation for U(t, tau, µ) yields:

−2iA′ +
1

2
|A|2A− 2Ae iωτ = 0.
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Parametric autoresonance

Equation for primary resonance

Let us de�ne A = 2ψe iωτ/2 and simplest chirp-rate ω = −λ2τ , then we

obtain:

iψ′ + (λ2τ − |ψ|2)ψ + ψ = 0,

For argument and modulus of complex-valued function

ψ(τ) = R(τ) exp(iφ(τ)) one obtains a system:

φ′ + R2 − λ2τ − cos(2φ) = 0, R ′ − R sin(2φ) = 0.

Most elegant form of equation for the parametric autoresonance, which

looks like as one equation of second order for φ = ϕ/2:

ϕ′′ + 4λ2τ sin(ϕ) + 2 sin(2ϕ)− 2λ2 = 0. (2)
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Parametric autoresonance
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Asymptotics for large amplitudes

Scattering for large solutions. Numerics
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Captured	trajectory

Ðèñ.: On the left-hand side one can see a solution of (8) with initial condition
ψ = 5 exp(0.15i) at τ = 0. The trajectory turns at τ ∼ 20. On the right-hand side
one can see a solution of (8) with initial condition ψ = 5 exp(0.19i) at τ = 0. The
graph shows how this trajectory is captured at τ ∼ 20. Both trajectories are
constructed by Runge-Kutta method of 4-th order with step 0.001.
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Asymptotics for large amplitudes

Equation for large value

A goal of this work is studying of the capture into parametric resonance of

large amplitude solutions of (8) as τ →∞. It is convenient to investigate

such solutions of (8) using a special depending on an inverse value of small

parameter:

ψ = ε−1Ψ(τ, ε), 0 < ε� 1.

Here ε−1 is a parameter of solution, which de�nes an amplitude of

oscillations of ψ.

After substitution (8) one gets:

iε2Ψ′ + (λ2ε2τ − |Ψ|2)Ψ + ε2Ψ = 0. (3)

µ de�nes a perturbation of nonlinear oscillator;

ε−1 de�nes an amplitude of the solution for the oscillator

The order of amplitudes of oscillations, which are considered here, is

intermediate small: A(τ) = O
(√

µ
ε

)
and

√
µ
ε � 1
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Asymptotics for large amplitudes

iε2Ψ′ + (λ2ε2τ − |Ψ|2)Ψ + ε2Ψ = 0.
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Non-captured	trajectory

A coe�cient (λ2ε2τ − |Ψ|2) in

the equation can change a sign

when τ is large τ = O(ε−2).

Such changing leads to turn of

the trajectory, this can be seen

on the left-hand side of �gure.
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Asymptotics for large amplitudes

iε2Ψ′ + (λ2ε2τ − |Ψ|2)Ψ + ε2Ψ = 0.
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Captured	trajectory

In rare cases the change of sign

for (λ2ε2τ − |Ψ|2) leads to

capture into the parametric

autoresonance.

Really a parameter ε de�nes a value of modulus of ψ. Therefore ε is a
parameter of solution for (8). Without a loss of generality one can assume

that the expression (λ2ε2τ − |Ψ|2) equals to zero at τ∗ = (ελ)−2.
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Asymptotics for large amplitudes

Equation for phase function

To study the capture we present the equation as an equation for angle

variable. Then we get:

ϕ′′ + 4(ε−2 + λ2(τ − τ∗)) sin(ϕ)− 2λ2 + 2 sin(2ϕ) = 0.

Let us consider new scale of the independent variable: θ = 2(τ − τ∗)/ε.

As a result we obtain explicit form for the perturbation with respect to ε:

ϕθθ + sin(ϕ)− ε2λ
2

2
+ ε2 sin(2ϕ)

2
= −ε3θ

λ2

2
sin(ϕ). (4)

The left-hand side of equation is integrable and only perturbation on the

right-hand side introduces an obstacle for integrability.
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Asymptotics for large amplitudes

Unperturbed equation

ϕθθ + sin(ϕ)− ε2λ
2

2
+ ε2 sin(2ϕ)

2
= 0. (5)

When ε = 0 the equation (5) equals to the pendulum equation. Stationary

solutions of (5) are close to equilibriums of pendulum.

sin(ϕk)− ε2λ
2

2
+ ε2 sin(ϕk)

2
= 0, k ∈ Z.
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Asymptotics for large amplitudes

For these equilibriums one can obtain an asymptotic formula:

ϕk ∼ π k + ε2(−1)k
λ2

2
− ε4λ

2

2
+ O(ε6), k ∈ Z,

where ϕ2n, n ∈ Z are centers and ϕ2n+1, n ∈ Z are saddles. Trajectories of

(5) are shown below.

-6 -4 -2 0 2 4 6

-2

-1

0

1

2

3

Ðèñ.: Phase portrait for (5), at ε = 0.2, λ = 1. One can see periodic solutions
near a center, homoclinics which begin and �nishing near saddles and twisted
trajectories, which pass between left point of the homoclinics and nearest saddle.
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Asymptotics for large amplitudes

Slow varying equilibriums.

For perturbed equation one can construct an algebraic asymptotic

expansions, which correspond to equilibriums of non-perturbed equation

(5). Such asymptotic expansions can be obtained by using the regular

perturbation theory.

ϕk ∼ π k − ε2(−1)k
λ2

2
+ ε4λ

2

2
+ ε5(−1)kθ

λ4

4
O(ε6), k ∈ Z. (6)

This expansion can be used as |εθ| � 1. For large values of θ one should

use another form of equation (4) where new independent variable is de�ned

as σ = ε3θ. On such way one obtains:

ε6ϕσσ + (1 +
λ2

2
σ) sin(ϕ)− ε2λ

2

2
+ ε2 1

2
sin(2ϕ) = 0.
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Asymptotics for large amplitudes

To study solutions of this equation for large values of σ one should make

changing of independent variable:

S =
1

ε3

∫ σ√
1 + λ2σ/2dσ.

It yields:

ε6 d
2ϕ

dσ2
≡ (1 + λ2σ/2)

d2ϕ

dS2
+ ε3 λ2

4
√

1 + λ2σ/2

dϕ

dS
.

Then equation has a form:

d2ϕ

dS2
+ ε3

√
2λ2

(
√

2 + λ2σ)3

dϕ

dS
+ sin(ϕ) + ε2 sin(2ϕ)

2(1 + σ/2)
− ε2 λ2

2(1 + σ/2)
= 0.

For S = 4
3λ2ε3 (

√
1 + λ2σ/2)3 we get

d2ϕ

dS2
+ sin(ϕ) +

3
√

2 sin(2ϕ)

λ4/3(3S)2/3
−

3
√

2λ2

(3S)2/3
+

2

3S

dϕ

dS
= 0. (7)
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Asymptotics for large amplitudes

Slow varying solutions of
d2ϕ
dS2 + sin(ϕ) +

3
√

2 sin(2ϕ)
λ4/3(3S)2/3 −

3√
2λ2

(3S)2/3 + 2
3S

dϕ
dS = 0

For slowly varying equilibriums of equation for perturbed pendulum one can

obtain asymptotic formula:

ϕk ∼ πk +
3

√
2λ2

9S2
(−1)k − 2

3S
3

√
4

3λ2S
+ O(S−2). (8)

Kuznetsov's theorem about algebraic asymptotics (A. N. Kuznetsov, Funct.

Anal. Appl., 6(2):119�127, 1972.) yields:

Theorem

There exist solutions of (4) with asymptotic expansions (8).
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Asymptotics for large amplitudes

Neighborhood of equilibriums

Let us study solutions near φk , k = 2n, n ∈ Z for perturbed equation.

De�ne by an action, or the same, square, which are enveloped of the curve

for one oscillation:

I =

∫
L
ϕ′dϕ,

L is a curve (ϕ,ϕ′), which is de�ned by equation:

E =
(ϕ′)2

2
− cos(ϕ)− ε2λ

2

2
ϕ− ε2 cos(2ϕ)

4
, E < 1.

The evolution of E under the perturbation can be calculated:

dE

dθ
= −ε3λ

2

2
θ sin(ϕ)ϕ′. (9)
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Asymptotics for large amplitudes

During one oscillation parameter E changes on a value:

δE = −ε3 λ2

2

∫ θ+Θ
θ θ sin(ϕ)ϕ′dθ ∼ ε3 λ2

2

∫ θ+Θ
θ θϕ′′ϕ′dθ =

ε3 λ2

4 θ(ϕ′)2|θ+Θ
θ − ε3 λ2

2

∫ θ+Θ
θ (ϕ′)2dθ = −ε3 λ2

4 I .

The changing of the action variable are the same:

δI = −ε3λ
2

4
I . (10)

This means, that the action or the same a square inside the trajectory over

one oscillation decreases. A projection of the curve on a plane (ϕ,ϕ′) is

smooth. Therefore the oscillating solution of perturbed equation tends to

ϕ2n. It means ϕ2n is stable focus.

Theorem

The solution ϕ2n is a stable focus for (4).
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Asymptotics for large amplitudes

Neighborhood of the focus

φ
'

φ
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Ðèñ.: The initial point of the trajectory is (0.0). The area of the projection
decreases.
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Asymptotics for large amplitudes

The evolution of E for perturbed equation is de�ned by following equation:

dE

dθ
= −ε3λ2θ sin(ϕ)ϕθ.

Then integrating along the homoclinics of unperturbed equation yields:

∆ = −
∫ ∞
−∞

ε3λ
2

2
θ sin(ϕ)ϕ′dθ.

A value of this integral de�nes a gap between two separatrix of perturbed

equation near the saddle (V.K. Mel'nikov.Trudy Moskov. Mat. Obshch.,

12:3�-52, 1963).
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Asymptotics for large amplitudes

 

internal separatrix
external separatrix

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-3 -2 -1  0  1  2  3  4

Ðèñ.: The splitting of separatrix for equation (4). The external curve make a loop
and tends to the saddle. The internal curve goes from the saddle and tends to the
focus.
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Asymptotics for large amplitudes

Asymptotic value of the gap is:

∆ ∼ ε3λ
2

2

∫ ∞
−∞

θϕ′′ϕ′dθ ∼ ε3λ
2

2

∫
L
ϕ′dϕ.

Here L is the separatrix loop of equation (5). As a result

∆ ∼ ε3λ
2

4
SL.

Here SL = 16 is a square which bounded by the separatrix loop of (5) on

the plane (ϕ,ϕ′). Hence, ∆ = 4ε3λ2.

Trajectories which go through the gap into the loop of non-perturbed

equation remain into this loop. Due to the equation (10) their action

decreases and the trajectories tend to focus ϕ2n. Such trajectories are

captured into the autoresonance.
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Asymptotics for large amplitudes

Theorem

The trajectories passed through the gap between separatrices

ϕ|θ=θk = ϕ2k+1, −2ε
√

2ελ <
dϕ

dθ
|θ=θk < 0, λ > 0. (11)

as θk < θ < O(µ−3) will oscillate near the focus ϕ2k .
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Asymptotics for large amplitudes

To �nd trajectories which will go through the gap between separatrices for

perturbed equation and will be captured into the autoresonance we

consider a Cauchy problem for equation (5) for a family of solutions with

thin pro�le into the gap of separatrices (11).

Let us calculate the evolution of E for perturbed equation. Direct

substitution gives:
dE

dθ
= ε3λ2θ sin(ϕ)ϕθ.

Values

E−k |ϕ=ϕk
= − cos(ϕk)− ε2λ2ϕk − ε2 cos(2ϕk)

4

and

E+
k |θ=θk = − cos(ϕk)− ε2λ2ϕk − ε2 cos(2ϕk)

4
+ ε3λ

2

4
SL

de�ne a projection of captured area on the complex plane Ψ.
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substitution gives:
dE

dθ
= ε3λ2θ sin(ϕ)ϕθ.

Values

E−k |ϕ=ϕk
= − cos(ϕk)− ε2λ2ϕk − ε2 cos(2ϕk)

4

and

E+
k |θ=θk = − cos(ϕk)− ε2λ2ϕk − ε2 cos(2ϕk)

4
+ ε3λ

2

4
SL

de�ne a projection of captured area on the complex plane Ψ.
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Asymptotics for large amplitudes

The projection looks like two spirals which twisted with frequency

O(1/ε−3) at distance O(ε−1) from Ψ = 0.

Width of this area is de�ned by ∆R2 = 2R∆R ∼ ∆ϕ′ =
√

2∆ ∼ 2ε
√

2ελ.
For variable ψ it means that the width of captured area is equal

2ε−1∆R ∼
√

2∆ ∼ 2ε
√

2ελ on the distance ε−1 from the ψ = 0.
Let us estimate a square of this areas during one twist:

S = 2πε−1∆R ∼ 4πε3/2
√

2λ.
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Asymptotics for large amplitudes

Hence the measure of captured trajectories from R = R0 up to R →∞
equals to integral from 1/R0 up to in�nity.

M =
16π
√

2λ√
R0

, R0 →∞.

The oscillations with amplitude R0 = ε−1 can be captured into resonance

as τ ∼ (λε)−2. It means:

Theorem

Beginning at some large τ = τ0 up to in�nity the measure of captured

trajectories has a following asymptotics

M ∼ 16πλ2

τ0
, τ0 →∞.
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Asymptotics for large amplitudes

The separatrices which bound projections of captured trajectories we can

de�ne as solutions of following Cauchy problems:

dE

dθ
= ε3λ2θ sin(ϕ)φθ,(

dϕ

dθ

)2

= 2E + 2 cos(ϕ) + 2ε2λ2φ+ ε2 cos(2ϕ)

2
, (12)

E−k |θ=θk = − cos(ϕk)− ε2λ2ϕk − ε2 cos(2ϕk)

4
,

E+
k |θ=θk = − cos(ϕk)− ε2λ2ϕk − ε2 cos(2ϕk)

4
+ ε3λ

2

4
SL,

ϕ|θ=θk = ϕ2k+1.

The separatrices correspond by di�erent initial values for parameter

E = E+
k and E−k .
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Asymptotics for large amplitudes

One can consider system of equations (15) for E and ϕ as along equation

for E .

dE

dϕ
= ε3λ2 sin(ϕ)

∫ ϕ

ϕk

dϕ√
2E + 2 cos(ϕ) + 2ε2λ2ϕ+ ε2 cos(2ϕ)

2

, (13)

E |ϕ2k+1
= E±k . (14)

The Cauchy problem (14) de�nes the asymptotic behavior of separatrices

which bound the captured trajectories.
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Asymptotics for large amplitudes

Main results

The captured trajectories are de�ned by Cauchy problem

dE

dθ
= ε3λ2θ sin(ϕ)φθ,(

dϕ

dθ

)2

= 2E + 2 cos(ϕ) + 2ε2λ2φ+ ε2 cos(2ϕ)

2
, (15)

E−k |θ=θk = − cos(ϕk)− ε2λ2ϕk − ε2 cos(2ϕk)

4
,

E+
k |θ=θk = − cos(ϕk)− ε2λ2ϕk − ε2 cos(2ϕk)

4
+ ε3λ

2

4
SL,

ϕ|θ=θk = ϕ2k+1.

Measure of trajectories which are captured into parametric

autoresonace for large time is bounded.
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Asymptotics for large amplitudes
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