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. Ve
Perturbed Painlevé-2

U= 20 +xu—ef(u, i, x), 0<e<l (1)

» Dynamical bifurcations.

» Passages through separatrices.

» Captures into resonances.
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The soft loss of a stability
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Figure: The image shows two numerical solutions of the
unperturbed Painlevé-2 equation with initial conditions taken near
the bifurcation boundary. For x < 0, the curves almost coincide;
for x > 0, they diverge as a result of soft loss of stability.
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Asymptotic properties of solutions

UN{/O;XSin<§( )3/2+Zoz log(— )+gz5>, X — —00.
()

The solution parameters are arbitrary constants « and ¢.

In the right part of the figure 1 solutions for x — oo oscillate
in the neighbourhood of branches of the function 4+/x/2.
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The shadow bifurcation border
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Figure: Here is shown the bifurcation boundary for the Painlevé-2
transcendent in the cross section of the phase space at x = —50.
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Motivation
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Flgu €. Here one can see the results of calculations of 2048x4096 trajectories by the Runge-Kutta method of

the 4th order. The bifurcation boundary in the section of the phase space (u, u’, x) is given for x = —50. The
bold curve corresponds to the Painlevé-2 equation, the thin curve corresponds to the perturbed equation (1) with
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Figure: Here the results of calculations of 2048x4096 trajectories
by the Runge-Kutta method of the 4th order are shown. The set of
trajectories in the cross section of the phase space (u, u’, x) at

x = —50 for the equation (1) with perturbation f = v/ at ¢ = 0.1
is shown on the left. The dark part is the set of starting points of
trajectories that, when passing through x = 0, fall into the
neighbourhood of \/m The bifurcation boundary of the set of
trajectories is shown from the rectangle selected in the left image.
In the right picture, the thin curves correspond to the Painlevé-2
equation, while the thick one corresponds to the perturbed
equation (1) with the perturbation f = v/ at e = 0.1.

Motivation
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Asymptotic substitutions

The asymptotics for the parameter ¢ will be constructed as:

)~ Y erué/z, a,9),
k=0

an~ ) a(§), o~ Fonle). (4)

It yields:
gzt 00 Do o Do B, du du
- dx 85 5‘oz 0¢ 8925 o€ (0]

The main condition for representing corrections in the formula
(4) is uniform boundedness in ¢ for £ < 0.

Formalism
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The primary term

An asymptotics of the primary term of the perturbed Painlevé

transcendent:
/e gl/ 3 5.
wl6/2v000) ~ S sin(9)+ e (g sinte)
10205 — 200 1, e\
4o cos(s) — T sm(3s)) + 0 ((_5) :

where:

2 3 [F d
=g+ [T e

Formalism
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The first correction

8201 = —6USU1 + xu; — f(UO,El-Jo, S/E) — 25(-1408al.10 — EQ.SangL.lo.

Two solutions of linearized Painlevé-2 are:

4 /e
o ﬁsm((&/)” ./ oﬁ(ode), <0,

V=

¢

4 &fe
uwfgcos(i(—g/af/%j / <<)C’C+¢) e<o,

S
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The solution of the equation for the first correction term can
be represented using the formula:

&/e .
P / (F(uo, 2ilo, y) — 260ty — 2600 i)is(y)dy —
0

£/e _
U¢>/ (F(uo, gtto, y) — 26004ty — 20005 ) Ua(y)dy. (5)
0

A condition for discard the linear growth in the first correction
term can be obtained by averaging:

/e
Sdo - 5/ f(u0>€£107y)u¢(.)/)dyv
0

) &/e
o = —e / F(to, <o, y ) () dy.
0

Formalism
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Proposition
The perturbations in the form:

N
f(U, U/,X) = Z ak1k2k3tk1uk2(u/)k3,

4ki+k3<ko

where (kl + 1), (k2 + ].) (k3 + 1) S N, kl + kz + k3 S N,
N € N, yield the equations for the correction terms in (4)

uniformly with respect € and €.

If the condition 1 is true, then the intergands in (5) have the order O(1), as uy ~ /&, and eig = O(1/ ¥z)),
and /e = O(sfl), In the integrand, vy and ugare used to explicitly calculate the corrections. These functions
have the order &/z. Then for the right side of the form t<1 /<2 (u’)k3 we get the order of the expression
gkitk3/4—ka/4=1/4 The requirement of the boundedness of the integrand for uj:

Gk + kg = ko + 1.

This reasoning also applies to an arbitrary-order correction. The 1 statement is proved.

Formalism



A remainder of the asymptotic series

Let us construct a segment of the formal series of perturbation
theory:

Un(&,) = Y Fun(€/z,€).

Then for the remainder of the asymptotic
eNU = u(x, ) — Un(&, €) one obtains the equation:

d2U 2 / /
W = xU — 6U0U+€F(U7 U/\[, U s UN,X).
We transform this equation to a system of first-order

equations:

U=V, V' =xU-663U+cF(U.V,Uy, Uy x).

Formalism
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System of equations for the remainder

The linear part of this system has a fundamental solution:

R(x)—{“? ﬂ

u, u,
We will search for the vector [U, V]T = R[X;, X5]". For
= [X1, Xa] we get:
X! = R0, F((RX)s, (RX)a, U, Uy )],

u, —u
R(x) = { ¢ e
It is convenient to rewrite this system of equations in the form:

Xll o —Ud,F(UaXl -+ U¢X2, ngl + UQI{)X2, UN, U,,V,X)
X5 | c U F(ua X1 + upXo, Ul X1 + ug X, Un, Uy, x) |’

6




Then for the remainder of the asymptotic
eNU = u(x,e) — Un(&, €) one obtains the equation:

d*U 2 roy
Proposition

If the perturbation f satisfies conditions 1, then for VN € N
there is &g € R, &g < 0, and

u(x,e) = Uy_1 + O(e"), x € (&/e,0), ¢ —0.

Domain
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25

Figure: Bifurcation boundary for the parameters of the Painlevé-2
transcendent in the polar coordinate system, here r is the distance
from the coordinate axis, ((3/2)r?log(2) — 7/4 — arg(['(ir?/2) is

the angle relative to the abscissa axis.

In the theory of Painlevé transcendent, it is known that for
x — 00 solutions, two families can be divided according to the
asymptotic behaviour. These families and their relation to

monodromi data were esblihed in the aIreadi mentioned
eformations



A small dissipation

U = =203 + xu —eu. (9)
Here:
. 1
Qg —§Q0
and

6 ~ 0.
The asymptotic behaviour of the primary term of the
Painlevé-2 transcendent with small dissipation has the form:

—ex/2 2 332 X ,—ez
up ~ 26\77 sin <3(—x)3/2 + Z/ ezdz+p> , X — —00.

Here a and p are solution parameters.

A small dissipation
lole]
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Asymptotics and numeric results
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Figure: The numerical solution of the equation (9) on the figure
practically coincides with the constructed asymptotic solution.
Therefore, the figure shows the numerical solution, which is a thin
line, and the difference between the numerical solution and the
constructed asymptotic solution, which is a bold line near the
abscissa axis.

A small dissipation
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Numeric and asymptotic boundaries
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Figure: Here one can see the cross-section of the u, v’ bifurcation
boundary at x = —50 for solutions of the perturbed Painlevé-2 equation
with small dissipation (9) at ¢ = 0.1. the bold line is the boundary
obtained numerically from 2048x4096 trajectories, with the beginning at
x = —50. A thin line is a boundary calculated from perturbation theory.

A small dissipation
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A nonlinear perturbation

Here we consider another example of the perturbed Painlevé-2

equation:
u" = =2u® 4 xu — e(u)?u. (10)

For this equation, the parameter « is a constant
g~ 0
and the equation for modulated ¢ follows:
13

Q-S ~ —éao.

That is, the perturbation leads to a shift:

(2 30 1
up ~ % sin (3(—x)3/2 + % log(—x) — §a3sx + p> . (11)
Here v and p are solution parameters.

A nonlinear perturbation
lole]
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Numeric and asymptotic solutions
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Figure: The numerical solution of the equation (10) on the figure
practically coincides with the constructed asymptotic solution.
Therefore, the figure shows the numerical solution, which is a thin
line, and the difference between the numerical solution and the
constructed asymptotic solution, which is a bold line near the
abscissa axis.

A nonlinear perturbation
(o] o)
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The borderlines
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Figu re: Here one can see the cross-section of the u, v’ bifurcation boundary at

x = —50 for solutions of the non-linearly perturbed Painlevé-2 equation (10) at
e = 0.1. The boundary obtained numerically for2048x4096 trajectories, with the
beginning at x = —50 , and the boundary calculated from perturbation theory almost

coincide. Differences can be observed away from the center. The rectangle highlighted
in the left drawing is enlarged in the right drawing. In the right drawing, the boundary
obtained numerically corresponds to short vertical dashes, the boundary obtained by
perturbation theory is indicated by continuous lines.

A nonlinear perturbation
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Conclusion

The equations for the parameters of the asymptotic behaviour
of the Painlevé-2 transcendent at x — —oo derived in 3 allow
us to obtain a formula for the bifurcation boundary of
solutions for a perturbed equation with a soft loss of stability
in the neighbourhood of x = 0. This makes it possible to
divide the solutions of the perturbed equation into solutions
close to \/x/2 and close to —/x/2 for x — oo. The results
are illustrated by computing perturbations of various classes.

O.M. Kiselev An asymptotic structure of the bifurcation

boundary of the perturbed Painleve-2 equation
arXiv:2012.07895

Conclusion
O
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Open problem
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