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Period of linear oscillations
An equation for linear oscillator can be written as follows:

ü + ω2u = 0.

Formally to find the period of motion we should multiply this
equation by u̇. in this case we get:

d
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)
= 0.

Then we integrate this equation over t and obtain a formula:
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du
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Here parameter E is a constant of integration in mathematical
viewpoint and an energy in physical one.
This formula gives opportunity to integrate the equation:
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2E − ω2y2



Period of linear oscillations

The period of oscillations can be obtained by the formula:
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So the period of linear oscillations
does not depend on the energy.
If
we consider the motion with different
initial values of the energy and u̇ = 0
on a phase plane we get the rotation
with constant angle velocity ω.
A shape of initial cloud propagates

and contracts during the circle.



Phase portrait for the solutions

−1.5 −1 −0.5 0.5 1 1.5

−1

1

u

u̇

One of the simplest equations for
non-linear oscillation is a Duffing’s oscillator:

ü + 2u − 2u3 = 0.

The same approach
to integrating give us the follows formula:

u̇2 + 2u2 − u4 = 2E

This formula defines a closed curves as 0 < E < 1/2 oscillating
solution. If E = 1/2 one has eighth different solutions.
I There are two saddles at the following points(−1, 0) and

(1, 0).
I Two separatrixies u = ± tanh(t) separate infinite solutions

and oscillations.
I Two unbounded separatrix moustaches u = ± cotanh(t)

which tend to (−1, 0) and (1, 0) as t →∞.
I Two unbounded separatrix moustaches u = ± cotanh(t)

which tend to (−1, 0) and (1, 0) as t → −∞.



Period of non-linear oscillations
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Let us consider
the oscillating solutions.
Period of the oscillations are

T =

∫ u1

−u1

dy√
2E − 2y2 + y4

,

where u21 = 1−
√

1− 2E .
The dependency T (E )
one can see on the left picture.



Lyapunov’s instability of non-linear oscillations
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The dependency of
the period on the parameter
E means that the points
on the internal trajectories
rotate faster that the points
on the external trajectories.
That is situated
schematically on the left
picture. On the picture the
bold lines show the points
at the same moments of
time at t = 0 and at some

t1 > 0.
The points on the close trajectories disperse. This shows the
Lyapunov’s instability for the non-linear oscillations.



Solutions near separatrix
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The separatries are special trajectories which
tends from one saddle point to another.
A thin
layer on the phase plane contains trajectories
with different behaviour. There are:

I the oscillations for E < 1/2,

I the separatricies for E = 1/2,

I the saddle points for E = 1/2,

I the unbounded trajectories for E > 1/2.

Therefore small variation of the parameter E changes the
behaviour of solutions drastically.
We consider the Duffing’s oscillator with small external force:

ü + 2u − 2u3 = ε cos(ωt + Φ), 0 < ε� 1.

and find the dependency of solution on this small perturbation.



Perturbation approach to solutions near separatrix
The upper separatrix solution looks like

u0 = tanh(t).

The solution near separatrix can be considered as a the separatix
solution and additional small perturbation:

u ∼ u0 + εu1(t) +
∞∑
n=2

εnun(t).

If one substitute this formula into the equation for Duffing’s
oscillator one get:

ü0 + 2u0 − 2u30 + ε(ü1 + 2u1 − 6u20u1) + O(ε2) = ε cos(ωt + Φ).

The u0 = tanh(t) is the solution of unperturbed Duffing’s
oscillator. Therefore in this formula we have the terms of order ε
and higher:

ε(ü1 + 2u1 − 6u20u1) + O(ε2) = ε cos(ωt + Φ).



Solution of the linearized equation

Let us consider for simplicity the terms of order ε2. Then we
consider the linearized equation:

ü1 + 2u1 − 6u20u1 = cos(ωt + Φ).

Consider solutions for the complimentary linearized equation:

v̈ + 2v − 6u20v = 0.

This equation can be obtained by derivation of the unperturbed
Duffing’s equation:

d

dt

(
ü0 + 2u0 − 2u30

)
= 0.



Linearly independent solutions of complementary equation

It yields:
d

dt
ü0 + 2u̇0 − 6u20 u̇ = 0.

This means the v1 = u̇0 = 1/cosh2(t) is a solution of the
complimentary equation.
Linearly independent solution v2 can be obtained using an equation
for the Wronskian. For this linearized equation the Wronskian is a
constant. Therefore we can consider the formula for the Wronskian
as an equation for the v2:

W (v1, v2) ≡ v1v̇2 − v̇1v2 = 1.

Using the formula v1(t) = 1/ cosh2(t) and the Wroskian one can
obtain:

v2 =
sinh(4t)

32 cosh2(t)
+

sinh(2t)

4 cosh2(t)
+

3t

8 cosh2(t)
.



Behaviour of solution of linearized equation near separatrix

The solution of the the linear equation for n-th order of ε have a
following form:

un = v1(t)

∫
Fnv2(τ)dτ − v2(t)

∫
Fnv1(τ)dτ.

For example n = 1 we have F1 ≡ cos(ωτ + Φ).
Formula for un is appropriated near upper separatrix. If we consider
the solution which starts form small neighbour of the left saddle
(−1, 0) in the follow form:

un ∼ An(k)v1(t) + Bn(k)v2(t), t → −∞,

Then in near the right saddle point (1, 0) we obtain

un ∼ An(k + 1)v1(t) + Bn(k + 1)v2(t), t → +∞,



The discrete map for the Duffing equation

∆B1(k + 1) =

∫ ∞
−∞

cos(ωτ + Φ(k))

cosh2(τ)
dτ =

π cos(Φ(k))

cosh(πω/2)
.

B1(k + 1) = B1(k) + ∆B1(k),

A1(k + 1) =
1

32
(B1(k) + ∆B1(k)),

Φ(k + 1) =
ω

2

(
log(ε) + log

(
(−1)k+1

32
(B1(k) + ∆B1(k))

))
+ Φ(k),

Bn(k + 1) = −32
Bn+1(k) + ∆Bn+1(k)

B1(k) + ∆B1(k)
,

An(k + 1) =
B1(k) + ∆B1(k)

32
(An−1(k) + ∆An−1(k)).



Instability of near the separatrix

This discrete map shows changing of the coefficients in the
solution. The coefficients Bn(k + 1) are defined by Bn+1(k). This
means that the correction terms of the order εn+1 define the
correction terms of the lower order εn on the next step of the
evolution.
Therefore the main term solution on the k-th step of evolution
depends on the correction terms of the order εk on the first step.
This means that the map is unstable.
Opposite direction we see for the coefficients An(k + 1) which
depends the coefficients An−1(k) of the higher correction terms on
the next step of the evolution.



The baker’s map

After
some

steps

So this the contraction in for the coefficients An(k) and expansion
for the coefficients Bn(k) corresponds to the baker’s map which is
typical for the chaotic systems.



Horseshoe map
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oscillation

to infinity

The trajectory oscillates
near the separatrix while

−B1(k) cosh(πω/2) < π cos(Φ(k)).

The dependency of Φ(k)
on the large value log(ε) shows
additional instability with
respect small parameter and

behaviour of the solution.
Such behaviour corresponds to the horseshoe map.
The horseshoe map define the set like Kantor set for the
oscillating trajectories with respect to values of ε on the small
interval ε ∈ (0, ε0), where ε > 0.
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