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Functional equation for a Gamma-function

Let us construct a an integral formula for gamma-function. Denote
an independent variable by z and an unknown function by Γ(z).
The equation for G (z) looks like the formula for factorial:

Γ(z + 1) = zΓ(z). (1)

For natural argument n ∈ N the solution of (1) has a property
Γ(n + 1) ≡ n!.
Our aim is to find a solution of (1) for real value z . This equation
is not solvable in terms of elementary functions. Below we will
derive well-known integral formula for the gamma-function and
study its asymptotic behaviour by Laplace-method.



The Laplace transform

We construct solution of(1) in the form of Laplace integral:

Γ(z) =

∫ ∞
−∞

Γ̃(p) exp(−pz)dp.

The right-hand side of (1) can be written in the form of:

zΓ(z) = z

∫ ∞
−∞

Γ̃(p) exp(−pz)dp =

−Γ̃(p) exp(−pz)

∣∣∣∣p=∞
p=−∞

+

∫ ∞
−∞

d Γ̃(p)

dp
exp(−pz)dp. (2)

This formula is valid when limits for outside the integral term exist.



A differential equation for the image

Suppose

lim
p→−∞

Γ(p) exp(−pz)− lim
p→∞

Γ(p) exp(−pz) = 0.

We can check this property when a solution will be obtained.
The left-hand side of (1) can be written in the form of:

Γ(z + 1) =

∫ ∞
−∞

Γ̃(p) exp(−pz) exp(−p)dp.

The equation (1) for direct image of gamma-function is:

Γ̃(p) exp(−p) =
d Γ̃(p)

dp
.



A formula for the image
This equation can be solved easily by means of separating of
variables:

d Γ̃

Γ̃
= exp(−p)dp,

or

Γ̃ = −C exp(− exp(−p)), where parameter C does not depend on p.

Let us check a property of outside the integral terms in (2), when
z > 0.

lim
p→−∞

exp(− exp(−p)) exp(−pz) = 0;

lim
p→+∞

exp(− exp(−p)) exp(−pz) = 0.

It is easy to obtain an expression for an inverse image when the
Laplace direct image was constructed

Γ(z) = C

∫ ∞
−∞

exp(− exp(−p)) exp(−pz)dp.



Integral formula for the Gamma-function

This formula can be rewritten in short form. Change the variable
of integration t = exp(−p). It leads to

Γ(z) = C

∫ ∞
0

exp(−t)t(z−1)dt.

I A special solution such as C = const and

Γ(1) = C

∫ ∞
0

exp(−t)dt = 1.

is called gamma-function.

Now we can write well-known integral representation for
gamma-function:

Γ(z) =

∫ ∞
0

exp(−t)t(z−1)dt. (3)



Moivre-Laplace approximation for the gamma-function
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Figure: Gamma-function and
Stirling-Moivre approximation.

To check that
function (3) satisfies to (1)
one can evaluate the integral
from right-hand side of (3)
through integration by parts:

Γ(z) =
tz

z
exp(−t)

∣∣∣∣t=∞
t=0

+

1

z

∫ ∞
0

exp(−t)tzdt =
1

z
Γ(z + 1).

The integral representation
for gamma-function
allows to evaluate
an asymptotic expansion
for gamma-function as z →∞.

Γ(z + 1) ∼
√

2πz
(z
e

)z
.



Airy’s equation

Airy’s equation is called following ordinary differential equation of
second order

u′′ − zu = 0 (4)

General solution of this equation oscillates as z < 0 and
exponentially grows as z > 0. It is easy to explain such properties
if one study an equation with fixed parameter instead of the
varying parameter z . Solutions of equation

v ′′ − Zv = 0, Z = const, (5)

are essentially dependent from a sign of parameter Z . The
solutions oscillate with a frequency

√
−Z when Z < 0. Otherwise

when Z > 0 there are two linear independent solutions, one of
them grows exponentially and another one decays exponentially. It
is reasonable to expect the same behaviour for a solution of Airy
equation on the intervals z < 0 and z > 0.



Graph for the Airy function
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Figure: Two special solutions for the Airy equation.



An integral representation

A solution of Airy equation can be represented in an integral of
Laplace type. Let us consider:

u(z) =

∫
γ
ũ(p) exp(pz)dp.

Here γ is an unknown contour of integration. We choose this
contour according to two conditions. The first condition is that the
integral should be convergent. The second one is that the integral
does not equal to zero. The contour will be determined after
obtaining an explicit form for ũ(z). Substitute the formula for u(z)
into Airy’s equation. We suppose that a differentiation is possible
under the integral sign:∫

γ
p2ũ exp(pz)dp − z

∫
γ
ũ exp(pz)dp = 0.



Equation for the image

It is convenient to remove a factor z via integration by parts:

z

∫
γ
ũ exp(pz)dp = ũ exp(pz)|γ+γ− −

∫
γ
ũ′ exp(pz)dp.

Points γ± are initial and end one of integration contour. We
suppose that a sum of terms outside the integral equals to zero. It
is possible when the contour is close or function ũ(p) exp(pz)
equals to zero at these points. It yields:∫

γ

(
p2ũ + ũ′

)
exp(pz)dp = 0.



The image of the Airy equation

The integral equals to zero when an expression in brackets equals
to zero. It follows that,

p2ũ + ũ′ = 0.

This equation can be easy integrated:

dũ

ũ
= −p2dp.

or
ũ = C exp(−p3/3).

It leads to an integral expression:

u(z) = C

∫
γ

exp(pz − p3/3)dp.



The path of integration
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Figure: Curves γ1, γ2, γ3 are
contours of integration that lead to
nontrivial Laplace integrals.

The integral is
convergent when <(p3) < 0 as
p →∞. It means the contour
should go to infinity inside
sectors −π/6 < arg(p) < π/6,
π/2 < arg(p) < 5π/6,
7π/6 < arg(p) < 10π/6. A
contour of integration can be
shrank to a point when both
branches go to infinity through
one sector. Such integrals
equal to zero. To represent a
non-trivial solution we choose
contours that are going to
infinity through two different

sectors, see figure 3.



Integral formula for the Airy function

Consider the integral over contour γ3. This contour is equivalent
to an integral over image axis. Then

u(z) = C

∫ i∞

−i∞
exp(pz − p3/3)dp.

Change a variable of integration p = ik . It yields:

u(z) = iC

∫ ∞
−∞

exp(i(kz + k3/3))dk.

The image part sin(kz + k3/3) of integrand is an odd function
with respect to k . The integral of it equals to zero. The real part
cos(kz + k3/3) of integrand is even with respect to k . It yields

u(z) = 2iC

∫ ∞
0

cos(kz + k3/3)dk.



A convergence of the integral
Show that the integral is convergent. Represent it as a sum of
integrals:

u(z) = 2iC

∫ √|z|+1

0
cos(kz + k3/3)dk + 2iC

∫ ∞
√
|z|+1

cos(kz + k3/3)dk.

The first integral is bounded for z ∈ R. Consider the second one.

I (z) = 2iC

∫ ∞
√
|z|+1

cos(kz + k3/3)dk.

Integrate it by parts:

I (z) = 2iC

∫ ∞
√
|z|+1

cos(kz + k3/3)dk = 2iC
cos(kz + k3/3)

z + k2

∣∣∣∣k=∞
k=
√
|z|+1

+

+2iC

∫ ∞
√
|z|+1

2k

(z + k2)2
sin(kz + k3/3)dk.

The last integral is absolutely convergent. The term out of integral
equals zero at k =∞. It gives that the integral I (z) is bounded
and the integral u(z) is bounded.



An integral formula for the Airy function
Let us choose C = 1/2iπ. As a result we obtain a formula for Airy
function:

Ai(z) =
1

π

∫ ∞
0

cos(kz + k3/3)dk.

This function is a solution of Cauchy problem for Airy equation
with an initial condition:

u(0) =
1

π

∫ ∞
0

cos(k3/3)dk, u′(0) = 0.

A value of Airy function at z = 0 is represented by
gamma-function.

1

π

∫ ∞
0

cos(k3/3)dk =
1

π

∫ ∞
−∞

(exp(ik3/3))dk.

Denote k3/3 = t. It gives k2dk = dt or dk = dt/(3t)2/3, then

1

2π

∫ ∞
−∞

exp(ik3/3)dk =
1

2π32/3

∫ ∞
−∞

exp(it)

t2/3
dt



An integral formula for the Airy function

Now the integral with respect to t can be represented as an
integral over an imaginary axis: τ = it, then

u(0) =
1

2π32/3

∫ i∞

−i∞

exp(−τ)

(iτ)2/3
d(iτ) =

i

π(3i)2/3

∫ i∞

0

exp(−τ)

τ2/3
dτ

or

u(0) =
−1

π(3)2/3

∫ i∞

0

exp(−τ)

τ2/3
dτ =

−1

π(3)2/3
Γ(1/3).



An integral formula for the Bi(z) function
Another linear independent solution with respect to Ai(z) is
obtained from an sum of integrals over the contours γ1 and γ2:

u(z) = C

∫
γ1

exp(pz − p3/3)dp + C

∫
γ2

exp(pz − p3/3)dp =

2C

∫ ∞
0

exp(pz − p3/3)dp +

C

∫ −i∞
0

exp(pz − p3/3)dp + C

∫ i∞

0
exp(pz − p3/3)dp.

Let us change a variable of integration in second and third integrals
from the right-hand said of this formula p = ik . As a result we get:

u(z) = 2C

∫ ∞
0

exp(pz − p3/3)dp + 2C

∫ ∞
0

sin(kz + k3/3)dk.

The Airy’s Bi(z) integral is:

Bi(z) =
1

π

∫ ∞
0

(
exp(pz − p3/3) + sin(pz + p3/3)

)
dp.



Parabolic cylinder equation

A canonical form of parabolic cylinder equation is

y ′′ −
(
x2

4
+ a

)
y = 0. (6)

Here x is an independent variable, a is a parameter. This equation
with a frozen large coefficient x → X = const has two independent
solutions. The first solution grows with respect to x and the
second one decays for large value of x .



Another form for the parabolic cylinder equation

Parabolic cylinder equation can be written in another form:

y ′′ +

(
x2

4
− a

)
y = 0.

Solutions for this equation oscillate at large real values of x .
Equation of the first form transfers to the second form through
substitution:

x → x exp(iπ/4), a→ −ia.

Below we study solutions for parabolic cylinder equation written in
the first form. Solutions of equation of the second form can be
obtained by the given substitution.



Changing of the unknown function

To obtain an integral representation for the solution of parabolic
cylinder equation it is convenient to change a required function :

y = exp(−x2/4)u.

Substitute this formula into equation. It gives an equation for u:

u′′ − xu′ −
(

1

2
+ a

)
u = 0

This equation is more convenient because it contains the first order
of independent variable. It allows to obtain the first order equation
for Laplace image and to integrate it.



The Laplace transform

We construct a solution u in the form of:

u(x) =

∫
γ

exp(kx)ũ(k)dk.

This formula contains an unknown Laplace image ũ(k) and
unknown contour of integration in complex plane k .
We carry out formal calculations and suppose that they are valid.
We justify all manipulations when Laplace image ũ and contour γ
of integration are determined.



Evaluate formulae for the first and the second derivatives with
respect to x :

d

dx

∫
γ

exp(kx)ũ(k)dk =

∫
γ
k exp(kx)ũ(k)dk.

d2

dx2

∫
γ

exp(kx)ũ(k)dk =

∫
γ
k2 exp(kx)ũ(k)dk.



Derivation of the integral formula
Substitute these formulae for equation and bring all terms under
integral sign:∫

γ

(
k2ũ(k)− xkũ(k)−

(
1

2
+ a

)
ũ(k)

)
exp(kx)dk = 0.

All terms besides −xkũ(k) in round brackets only depend on
variable k . Transform the integral of this term by parts to remove
a variable x :

−
∫
γ

(xkũ(k)) exp(kx)dk = −kũ(k) exp(kx)

∣∣∣∣γ+
γ−

+∫
γ

(ũ(k) + kũ′(k)) exp(kx)dk.

Where γ± are initial and finishing points for contour γ. We
suppose that contour γ is such that a sum of out of integral terms
equals to zero. It yields:∫

γ

(
k2ũ(k) + ũ(k) + kũ′(k)−

(
1

2
+ a

)
ũ(k)

)
exp(kx)dk = 0.



Derivation of the integral formula

The integral equals zero when an integrand equals zero. This
condition gives a differential equation:

k2ũ(k) + kũ′(k) +

(
1

2
− a

)
ũ(k) = 0.

Solution of this equation is∫
dũ

ũ
=

∫ −k2 +
(
a− 1

2

)
k

dk

or

ũ = C exp(−k2

2
)ka−1/2.

The solution can be represented in the form of:

y = C exp(−x2/4)

∫
γ

exp

(
kx − k2

2

)
ka−1/2dk.



Derivation of the integral formula
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Figure: An integration over loop γ. The contour idents the point of
branching z = 0 and goes under and over a crosscut <(z) < 0 that
connects the point of branching z = 0 and infinity point.

The integrand has a singular point at x = 0 as a < 1/2. Let
k = ξ + iλ, then <(−k2) = λ2 − ξ2. It gives <(−k2) < 0 as
λ2 < ξ2. Any contour that contains point at infinity and goes
through the sector 3π/4 < arg(k) < 5π/4 from infinity and goes
back through −π/4 < arg(k) < π/4 can be considered as γ. This
contour does not include point k = 0. Cauchy theorem gives these
contours are equivalent accurate to a loop around k = 0 that goes
from infinity point under =(k) = 0 axis and goes back over
=(k) = 0 axis.



The solution of the parabolic cylinder equation in special
case

A point x = 0 is a pole of n + 1-th order as a = −n + 1/2, n ∈ N
and

y(x) = C exp(−x2/4)

∫
γ

exp

(
kx − k2

2

)
k−ndk =

= C exp(x2/4)

∫
γ

exp

(
− x2

2
+ kx − k2

2

)
k−ndk =

= C exp(x2/4) res
x=0

(
exp

(
− 1

2

(
x − k

)2)
k−n

)
=

= C (−1)n
exp(x2/4)

n!

dn

dxn
exp(−x2/2).



A graph for the solutions.
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Figure: Graphs for parabolic cylinder functions. Values of parameter are
−a− 1/2 = 0, −a− 1/2 = 2, −a− 1/2 = 5. A number of oscillations
grows when parameter −a− 1/2 grows.



Summary

In this lecture we use the Laplace transform to obtain classical
formulas for three type of functions.

I The gamma-function.

I The Airy function.

I The parabolic cylinder functions (Weber’s functions).
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