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Stability

Let us consider a differential equation with the trivial solution

x ′ = f (x , t), f (0, t) ≡ 0.

The trivial solution x ≡ 0 is stable if ∀ε > 0 and ∀t0 ∃δ(ε, t0) > 0
and ∃x0 |x0| < δ ≤ ε then

|x(t)| < ε, ∀t > t0.

Generally everyone must (sic!) understand that this defines
stability as existence of general solution which will remain into any
small neighbourhood of zero at all time after some t0.



Example of stability and instability

I The trivial solution of the equation x ′ = −x is stable. Let us
take some ε > 0 and t0 then for all x0 = ε and δ = ε the
solution is x(t) = εe−(t−t0) and the condition of stability
|εe−(t−t0)| ≤ ε for all t > t0.

I The trivial solution of the equation x ′ = x is unstable. Let us
take some ε > 0 and t0 then for all x0 = ε and δ = ε the
solution is x(t) = εe(t−t0) and the condition of stability is not
valid: |εe(t−t0)| ≥ ε as t > t0.



First Lyapunov’s theorem

Consider a system:

x ′ = Ax + φ(x), φ(x) = o(x).

Theorem (First Lyapunov’s theorem)

If all eigenvalues of of the matrix A have a negative real part, then
x ≡ 0 are stable.

Rudely speaking this theorem uses the well-known property that for
small values the linear part is more important than non-linear parts
for any polynomials. Therefore if any solutions of the linearized
system decrease, then the small general solution of the non-linear
equation decreases also.



Example for the first Lyapunov’s theorem

Let us consider a non-linear system of equations:

u′ = v v ′ = −u − bv + u3.

The matrix A and the eigenvalues:

A =

(
0 1
−1 −b

)(
X1

X2

)
= λ

(
X1

X2

)
−λ(−b − λ) + 1 = 0, λ1,2 =

−b ±
√
b2 − 4

2
.

So the trivial solution is stable as b > 0.



The limitations of the using of the first Lyapunov’s theorem

The first Lyapunov’s theorem cannot be used without linear part
like

u′ = u3.

and for the linear systems with non-negative real part of the
eigenvalue like the follow:

u′ = v , v ′ = u, λ = ±
√
−1.



Second Lyapunov’s theorem

Theorem (Second Lyapunov’s theorem)

If ∃L(x) as |x | < ε and

I L(x) = 0 if and only if x = 0;

I L(x) > 0 if and only if x 6= 0;

I L̇(x) ≤ 0 for all x < ε and t > t0,

Then the solution is stable.

The second Lyapunov’s theorem assumes using some function L
which can play role of distance between a general solution and the
trivial one. And if such function does not grow this means that the
solution remains in small neighbourhood of the trivial solution.
Such function is called Laypunov function. The main difficulty is to
find the Lyapunov function for certain system.
Often as the Lyapunov’s function is convenient to use the energy
or some of conservation law for the given system.



Examples for the first Lyapunov’s theorem

I The Lyapunov system for the non-linear equation without any
linear part:

u′ = −u3, L(u) = u2,

d

dx
L(u) = 2u

d

dx
u = −2u4.

Therefore L(u) ≡ u2 is Lyapunov function for the given
equation and the trivial solution is stable.

I The Lyapunov function for the linear system:

u′ = v , v ′ = −u, L(u, v) = u2 + v2,

d

dx
L(u) = 2u

d

dx
v + 2v

d

dx
u = 2uv − 2vu ≡ 0.

So L(u, v) ≡ u2 + v2 is Lyapunov function for the given
system and the trivial solution is stable.



A float governor

Pozunov lived in Altay and he was the first man why construct
two-cylinder machine in the world (1765). His steam machine
needs a governor to control a level of water in the steam boiler. He
used a float regulator.
The float regulator change the cross-section of the pipe which
provide the water into the boiler.



Model of the float regulator.

Let the regular level of water equals to h.
The cross-section of the pipe changes as k(h − x), where x is a
current level of water.
Some part of water boil it out: mdt.
If x < h then water balance defined by the equation:

dM = k1(h − x)dt −mdt, x < h.



Differential equation for the flow governor
Changing of water in the boiler:

dM = k2dx .

Then
k2dx = k1(h − x)dt −mdt.

As result we obtain the differential equation for the governor:

dx

dt
= X − kx , k =

k1

k2
, X = kh +

m

k2
.

The constant solution:

xs = h +
m

k1
.

This solution is stable. Any other solution as x < h grows:

x = xs + x0e
k



History of invention

Van der Pol worked in Philips and constructed the generator for
stable oscillations (1927). Now such kind of oscillation called
relaxation oscillations. Such behaviour appears often in physics,
technique and biology.



Generator
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Figure: The electronic circuit for oscillator van der Pol’s. This equipment
generate a current with stable frequency. The cyclic recharging of the
capacitor regulate the voltage on the triode. The anode current inducts
the electromotive force in the secondary inductor. This current charges
the capacitor as a result the voltage on the grid grows and the anode
current decreases. The capacitor runs down. The anode current grows
and electromotive force grows and such cycle repeated.



Notifications
M – coefficient of induction

Ia – anode current

Eg – the greed voltage

Es – typical voltage

L – inductor

C – capacity

R – resistance

σ – conductivity of the triode.

Te anode current non-linear depends on the voltage on the grid:

Ia = σ

(
Eg −

1

3

E 3
g

E 2
s

)
.

The voltage on the grid:

Eg =
Q

C

Q is the charge of the capacitor.



The van der Poll’s equation

The current is equal I = (dQ)/(dt) = C (dE )/(dt). The equation
for the voltage in the equipment

L
dI

dt
+ RI +

Q

C
= M

dIa
dt
.

In dimensionless form: U = Eg/Es , t = T τ :

Ü + TR

√
C

L
U̇ + T 2U =

MσT√
LC

(1 + U2)U̇

Let A by the typical amplitude for the oscillations:

ÿ − ν(1− y2)ẏ + y = 0.



Instability near the origin

ν = Mσ/
√
LC − R

√
C/L = MσA2/

√
LC ,A =

√
1− RC

Mσ

ẏ = x ÿ = ẋ , then

dx

dy
=
ν(1− y2)x − y

x
.

The irregular point is equal (0, 0).

x2 + y2 = R2

Then

R
dR

dτ
= 2x2ν(1− y2).

Therefore for small values of R the trajectories go out from the
neighbourhood of the point (0, 0) and as |y | > 1 then R decrease.



Perturbation theory for small ν

Let us consider the case for small value of ν such as 0 < ν � 1.
So let us construct the solution as a series of the parameter ν:

y ∼ y0(t) + νy1(t) + ν2y2(t) + ν3y3(t) + . . . .

Substitute the formula for u into the van der Pol equation and
collect the terms with the same order of the small parameter ν as
a result we get:

y ′′0 + y0 + ν(y ′′1 + y1 − (1− y2
0 )y ′0) + O(ν2) = 0.

The equation for y0:
y ′′0 + y0 = 0

has a general solution in the form:

y0 = a cos(t − φ),

where a and φ are parameters of the solution.



Perturbation theory for small ν

The equation for the correction y1

y ′′1 + y1 = (1− y2
0 )y0

has more convenient form after the substitution of
y0 = a cos(t − φ):

y ′′1 + y1 = −(1− a2 cos2(t − φ))a sin(t − φ).

After using a trigonometric formulas we obtain:

y ′′1 + y1 =

(
a2

4
− 1

)
a sin(t − φ) +

a3

4
sin(3(t − φ)).

The right-hand side of this equation contains the resonant term(
a2

4 − 1
)
a sin(t − φ), which leads to invalidity of the main term of

the perturbation theory in the form y0 = a cos(t − φ) as
t = O(ν−1).



Perturbation theory for small ν

To use the main term of the perturbation in the same form we
must find a possibility to exclude the resonant term from the
equation for y1.
The method of exclusion of the resonant term is called van der
Pol’s method. We assume that the the parameter a is not a
constant but it depends on new slow variable νt: a = a(νt).
In this case:

d2

dt2
y0 =

d

dt
(νa′ cos(t − φ)− a sin(t − φ)) =

ν2a′′ cos(t − φ)− ν2a′ sin(t − φ)− a cos(t − φ).



Perturbation theory for small ν
This assumption leads to the new form of the equation for the first
correction:

y ′′1 + y1 =

(
a2

4
− 1

)
a sin(t−φ) +

a3

4
sin(3(t−φ)) + 2a′ sin(t − φ).

This term allows to gather the coefficients of sin(t − φ) into new
equation for new additional function a(νt):

a′ =

(
1− a2

4

)
a.

For small value a the right-hand side is positive, then a grows.
Therefore a ≡ 0 is unstable. If a > 2 then a′ < 0 and then the
function a decreases. So the value a ≡ 2 is the stable solution.
Therefore

y ∼ 2 cos(t − φ)

looks as an attractor for all solutions as small values of ν.
Such attractors are called limit cycles.



Construction
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Figure: Coordinates of the center for the robot are (x , y) and the direction of
the one is angle α. This coordinating triplet (x , y , α) defines the position the
robot in the plane.



Kinematics
To derive the equations for the moving in the configuration space
(x , y , α) ∈ {R2 × S1} we define the angle velocity of left wheel by
ωL and the angle velocity of right wheel by ωR . Typical values of
the velocities are less than 100 rad/sec.
Let be known the angle velocities of the wheels and ωL < ωR .
Then the linear speed of left wheel is ωLD/2 and the linear speed
of right wheel is ωRD/2.
Let us define a radius of the trajectory by R. Left and right wheels
are moving along circumference. An equation for turn velocity of
axis for the wheel is:

ωLD/2 = α̇(R − K ), ωRD/2 = α̇(R + K ).

Then one can obtain the velocity of the turn and radius of the
trajectory:

α̇ =
D

4K
(ωR − ωL), R =

ωR + ωL

ωR − ωL
K .



Kinematics

Let (X ,Y ) be coordinates of center for the turn. Current
coordinates of the robot are (x0, y0, α0). Then one can write the
following formula for X ,Y and R:

x0 − X = R sin(α0), y0 − Y = −R cos(α0).

Let us define coordinates of the robot after the turn on the angle
dα by (x1, y1, α1). Then the change of the coordinates are:

α1 − α0 = dα,

x1 − x0 = R(sin(α1)− sin(α0)),

y1 − y0 = −R(cos(α1)− cos(α0)).



Difference equations
Let us denote a time step by δ. Then a recurrent system of
equations for coordinates can be written as follows:

αn+1 − αn =
D

2K

ωR − ωL

2
δ,

xn+1 − xn =
ωR + ωL

ωR − ωL
K (sin(αn+1)− sin(αn)),

yn+1 − yn = −ωR + ωL

ωR − ωL
K (cos(αn+1)− cos(αn)). (1)

It is convenient to rewrite x = KX , y = KY and to denote
ω = (ωR + ωL)/2, θ = (ωR − ωL)/2, ∆ = δωD/(2K ) Then one
obtain the system in dimensionless form:

αn+1 − αn =
θ

ω
∆,

Xn+1 − Xn =
ω

θ
(sin(αn+1)− sin(αn)),

Yn+1 − Yn = −ω
θ

(cos(αn+1)− cos(αn)).



Differential equation

One can rewrite the system of difference equations into system of
ordinary differential equations where the independetn variable T is
such that Tn+1 − Tn = ∆. Let us denote ξ = θ/ω, if ∆→ 0 then
one get:

α′ = ξ, X ′ = cos(α), Y ′ = cos(α). (2)

Here ξ = θ/ω is dimensionless control parameter. This parameter
means the ratio the velocity of the turn and speed of moving along
a trajectory of the robot.



Feedback control
If line-sensor shows that the deviation is equal Z , then the value of
control parameter θ is :

θ = κpZ .

Here κp > 0 is a coefficient of the feedback control.
A formula for the value of the deviation Z from the middle of the
line-sensor can be obtained using this geometry property:

KZ cos(α) + KY + A sin(α) = 0. (3)

Then the recurrent system for coordinates of the robot has a form:

α1 − α0 = −κp
ω

∆

(
Y0

cos(α0)
+

A

K

sin(α0)

cos(α0)

)
,

X1 − X0 =
ω

κp

(sin(α1)− sin(α0)) cos(α0)(
Y0 + A

K sin(α0)
) ,

Y1 − Y0 = − ω

κp

(cos(α1)− cos(α0)) cos(α0)(
Y0 + A

K sin(α0)
) . (4)

Here one should consider ω/κp as a parameter of this system.



Differential equations for the controlled robot
The system of ordinary differential equations for this feedback
control has a form:

α′ = −κp
ω

(
Y

cos(α)
+

A

K

sin(α)

cos(α)

)
, X ′ = cos(α), Y ′ = sin(α). (5)

One can rewrite this system as a linear differential equation of
second order:

Y ′′ = −κp
ω

(
Y +

A

K
Y ′
)
. (6)

Let us change the independent variable τ = T
√
κ/ω and let us

use new parameter µ = (A/K )
√
κ/ω. As a result one obtain:

Y ′′ + µY ′ + Y = 0.

A characteristic equation has a form:

λ2 + µλ+ 1 = 0.



Stability due to the first Lyapunov’s theorem

Real parts of roots for this equation: <(λ1,2) < 0. Therefore the
zero is asymptotic stable solution for this equation. Then one get a
following.

Theorem
The solution of system (5) α = 0, Y = 0 and X = τ is asymptotic
stable.

For fast linear speed or the same as µ→ 0 the real part of the
roots of characteristic equation is small and the stability property
decreases. Really one can see:

k1 ∼ i − µ

2
, k2 ∼ −i −

µ

2
, µ→ 0.



Stability control
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Proportional feedback control.
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Figure: Stable and unstable straightforward moving under feedback
control with different values of ω. The geometric dimensions of the robot
are: D = 0, 05,K = 0, 1, A = 0, 2. The step over time is δ = 0.01.
Coefficient of proportional control is: κp = 1.



Control with delay

The system with feedback control has a delay because of
processing. Let us define a typical delay as δ.
The shift with respect of middle of line-sensor is know for time
value t − δ.
In terms of the variable T one get ∆ = (D/2K )δω.
The maps for α and Y are linked.

αn+1 = αn +
κp
ω
Zn∆, (7)

Yn+1 = Yn −
ω

κp

(
cos
(
α +

κp
ω Zn∆

)
− cos(αn)

)
Zn

, (8)

where

Zn = −
Y + A

K sin(αn)

cos(αn
.



Analysis of the discrete map
Let us obtain an asymptotic behaviour for this map near
(α, y) = (0, 0):(

αn+1

Yn+1

)
∼

(
1− κpA

ωK ∆ −κp
ω ∆

∆− κpA
ωK

∆2

2 1− κp
ω

∆2

2

)(
αn+1

Yn+1

)
.

Let us consider quadratic form as a deviation:

Fn = α2
n +

κp
ω
Y 2
n .

One can obtain an asymptotic approximation when ω →∞:

Fn+1 ∼ Fn −
2Aκp
Kω

∆α2
n +

κp
ω

∆2α2
n

Therefore if
K∆− 2A < 0,

then Fn+1 < Fn.



Condition for the control of fast robot

ω <
4A

Dδ
.

The stability does not depend on proportional coefficient of the
feedback control κp.



Summary

I The limit cycles show stable oscillations.

I The delay in the control add instability for the systems close
to the border of its stability.
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