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Mathematical models in population dynamics
The simplest and one of the first mathematical model of
population was suggested by T.R. Malthus in his ”An assay of the
principle of population” published in 1798.
Let N be the numbers of the individuals in the population.The
number of the new births is proportional of N. Then the growth of
the numbers of individuals during ∆t is equal to ∆N = kN∆t.
Here k is a proportional coefficient. So we obtain:

∆N

∆t
= kN.

Let us consider ∆t → 0 then we obtain a differential equation:

dN

dt
= kN.

The general solution of this equation is an exponent:

N = N0 exp(k(t − t0)), N|t=t0 = N0.

Such equation is one the simplest differential equations and
therefore this equation is appeared in a lot of mathematical models.



Nuclear decay

The same law defines a nuclear decay and initial stage of epidemics.
For the nuclear decay the proportional coefficient k < 0. As a rule
physicists consider a half time of the decay T . It means the
numbers of the atoms of the decayed quantity is:

N(t0 + T ) = N(t0)/2, exp(kT ) = 1/2, k = − log(2)/T .

One of the most dangerous product of the radioactive pollution is
Iodine 131. The half period of the Iodine 131 equals TI 131 = 8
days. The half period of decay for uranium 232 is TU232 = 68, 9
years and the same period for uranium 238 TU238 = 4, 468× 109

years.



Fibonacci sequence

Well-know Fibonacci sequence appears as a solution of the
population dynamics. Fibonacci considered a dynamics of the
growth of rabbits (1202).
Every pair of the rabbits give an additional pair of rabbits due 2
mounts. Let us derive the formula for the quantity of the rabbit
after 2n month. .
The sequence is defined by the rule:

Nk+1 = Nk + Nk−1



Solution of the Fibonacci problem

Assume Nk = λk then

λk+1 − λk − λk−1 = 0

λ2 − λ− 1 = 0, λ± =
1±
√

5

2
.

The linear combination of both solution is solution also:

Nk = c1λ
k
+ + c2λ

k
−.

The problem is to find values of c1 and c2 using the initial data:

N0 = c1 + c2 = 1

N1 = c1

(
1 +
√

5

2

)
+ c2

(
1−
√

5

2

)
= 1



Solution of Fibonacci problem

c1 + c2 = 1,
√

5(c1 − c2) = 1,

then

c1 =
1

2
+

1

2
√

5
, c2 =

1

2
− 1

2
√

5
.

The final formula looks like:

Nk =

(
1

2
+

1

2
√

5

)(
1 +
√

5

2

)k

+

(
1

2
− 1

2
√

5

)(
1−
√

5

2

)k

.

After simplifications we obtain:

Nk =
1

2k+1
√

5

(
(1 +

√
5)k+1 − (1−

√
5)k+1

)
.



The logistic equation

The number of carps in the pond depends on connection between
their food and the carps quantity. The limitation for the infinitely
growth is a value of the foot in the pond.
Let us assume in the pond appears M quantity of the food, one
carp eat m quantity of the food. If the food quantity is more than
it needed for current numbers of the carps, then the numbers of
the carps grow in the opposite case the carps extinct. Then the
change of the carps in the pond is:

dN = k(M −mN)Ndt,

here k is proportional coefficient. So we obtain the differential
equation:

dN

dt
= k(M −mN)N.



Canonical form of the logistic equation

If the quantity N > M/m, then left hand side of the equation is
negative and N decreases. If N < M/m, then the right-hand side
is positive and N increases. The value N0 = M/m is the
equilibrium of the carps numbers in the pond.
It is convenient to divide the left and right hand-side by N0 and
define new function as n = N/n0. As a result we obtain:

1

kM

dn

dt
= (1− n)n.

Denote τ = kMt then we obtain a canonical form of the logistic
equation:

dn

dτ
= (1− n)n.

This equation was studied by P.F. Verhulst at 1838.



Properties of the solution of n′ = (1− n)n.

The trivial solution n ≡ 0 is unstable and all solutions in a small
neighborhood are exponentially increase. To show this let us
consider a linearized form of these equation for small n. After
neglecting of the nonlinear term −n2 as very small with respect to
the linear term n we obtain:

n′ ∼ n. n ∼ n0 exp(τ), n0 ∈ R.

The trajectories go away from n = 0
To linearize the logistic equation near n = 1 we define:
n = 1 + u(τ). Here we assume the function u(τ) very small. Then
the linear equation for u(τ):

u′ = −u(1 + u), u′ ∼ −u, u ∼ u0 exp(−τ), u0 ∈ R.

The trajectories tends to u = 0 and hence n = 1 is stable solution.



General solution for the logistic equation
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Figure: A general solution has the
form:
n(τ) = 1

1+Ce−τ , τ > 0, C > −1.

The formula for the solution
of the logistic equation can be
obtained by the following steps:

dn

(1− n)n
= dτ,

log |n| − log |1− n| = τ − τ0,
n

1− n
=

eτ

C
.

Here |C | = eτ0

is a parameter of the solution.



The predator-prey model
A.J. Lotka (1925) and V. Volterra (1926) assumed the model with
population of two kind like predators and preys.
Let x be numbers of preys and y be numbers of predators. The
preys reproduced proportional their quantity and disappear
proportional the numbers of the predators:

dx = (α1x − β1yx)dt, α1, β1 > 0.

The numbers of the predators are increased proportional by the
preys and disappeared proportional their quantity:

dy = (−α2y + β2yx)dt, α2, β2 > 0.

As a result the system of the differential equations are:

dx

dt
= (α1 − β1y)x ,

dy

dt
= −(α2 − β2x)y .



The simplest form of the predator-prey model

The points of equilibrium are (x , y) = (0, 0) and
(x , y) = (α2/β2, α1/β1).
It is convenient to change the variables:

x =
α2

β2
u, y =

α1

β1
v .

As a result we obtain:

du

dt
= a1(1− v)x ,

dv

dt
= −a2(1− u)v .

The changing of the independent variable t = τ/a1 yields:

du

dτ
= (1− v)u,

dv

dτ
= −k(1− u)v .

Here k = a2/a1 is a parameter of the model.



The neighborhoods of equilibrium points of the
predator-prey model

In the neighborhood of the origin the linearized system looks like:

du

dτ
∼ u,

dv

dτ
∼ −kv .

So the solutions are u ∼ u0 exp(τ) and v ∼ v0 exp(−kτ). The u
exponentially grows therefore the trivial solution is unstable.
The linear equation in the neighborhood of the point
(u, v) = (1, 1) can be obtained after the changing of the variables:

u = X + 1, v = Y + 1.

The linear system for X ,Y has the form:

dX

dτ
= Y ,

dY

dτ
= −kX .

To study the stability of the model in (u, v) = (1, 1) we need
additional calculations.



The conservation law for the predator-prey model
Let us divide the equation

dv

dτ
= −k(1− u)v ,

by the equation
du

dτ
= (1− v)u.

As a result we obtain:

dv

du
=
−k(1− u)v

(1− v)u
.

Then rewrite the equation in the differential form:

(1− v)
dv

v
= −k(1− u)

du

u
or

dv

v
− dv = kdu − k

du

u
.

After integrating we get:

log(v)− v = −k log(u) + ku + C .



The conservation law for the predator-prey model
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Figure: The phase portrait of the
predator-prey model, k = 2.

The value

C = log(vuk)− (ku + v)

is a conservation law
for the predator-prey model:

dC

dτ
=

dv

dτ

uk

vuk
+ k

du

dτ

uk−1v

vuk
−

k
du

dτ
− dv

dτ
=

−k(1− u) + k(1− v)−
k(1− v)u + k(1− u)v =

−k + ku + k − kv − ku +

kvu + kv − kuv = 0.
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