Klein's model of Lobachevskii geometry and pseudosphere

O.M. Kiselev o.kiselev@innopolis.ru

Innopolis university

Axioms of the Klein's model

Parallel lines in the Klein's model

Projection on the absolute

Bibliography

Axiom about existence of segment with given length

So, one can construct an interval for given

distance.

Projection on the absolute

Axiom of existence of given triangle

Let us consider the triangle *ABC*. The **axiom** said that there exist an equivalent triangle $A_1B_1C_1$ on a given straight line *a* and given points $\{A_1, B_1\} \in a$ and the point C_1 belongs to given side of the line *a*. The same axiom has the Klein's model of the Lobachavskii geometry.

Axiom of parallel lines in Lobachavskii geometry

There exist a line a and a point $A \notin a$ such that two different lines pass through the point A and non-intersect with given line a.

Lemma. So uncountable numbers of lines pass through the point A and do not intersect with the line *a*.

Projection on the absolute

Proof of existence diverge lines

Let a_1 and a_2 be two lines and $a_{12} \cup a = \emptyset$. Consider points $B_1 \in a_1$ and in that side with respect to the point A and a point $B \in a$ such that the point $B_2 = (B, B_1) \cap a_2$ belongs to the interval $[B_1, B]$. For every point $M \in (B_1, B_2)$

the straight line $(A, M) \notin a$ because in an opposite case to intersect the straight line a the straight line (A, M) should cross the line a_2 in two different points in the point A and in one another point.

Parallel lines in the Klein's model

Set us define a straight line a' as a **parallel line** to given line a if such straight line is a border line in the set of lines which do not intersect to the line a.

Other lines which do not intersect with the line *a* are called **divergent lines**.

A Lobachevskii function

Let us consider the given straight line a and their parallel line a' which passes trough the point $A \notin a$. Define an acute angle λ between a parallel line a' and an orthogonal line passed trough the point A as an **angle of parallelism**. Lemma. The angle of parallelism is uniquely defined. **Proof.** The angular value can be obtained if one consider the vertex of the angle of parallelism as a central angle. In this case both angles of parallelism have the same angular value.

A Lobachevskii function

Lemma. The angle of parallelism depends on a distance between the point *A* and the straight line *a*. A function defines the dependence an angle of parallelism of the distance between a point *A* and given straight line *a* is celled a Lobachevskii function:

$$\cos(\alpha) = x$$
, $d = -\log\left(\frac{1-x}{x+1}\right)$, $e^{-d} = \frac{1-x}{x+1}$,

so,

$$xe^{-d} + e^{-d} = 1 - x, \quad x(e^{-d} + 1) = 1 - e^{-d}, \quad x = \frac{1 - e^{-d}}{1 + e^{-d}}.$$

As a result we obtain:

$$x = rac{e^{d/2} - e^{-d/2}}{e^{d/2} + e^{-d/2}}, \quad x = anh\left(rac{d}{2}
ight).$$

Lobachevskii function and unit of the length

The formula for the Lobachevskii function looks like:

$$\Pi(d) = \arccos\left(anh\left(rac{d}{2}
ight)
ight)$$

and the inverse function is:

$$d = -\log\left(\frac{1-\cos(\alpha)}{1+\cos(\alpha)}\right) = -2\log\left(\tan\left(\frac{\alpha}{2}\right)\right), \quad 0 < \alpha < \pi/2.$$

This formula connects the length and angle. For the angle we have a natural measurement which is a radian. Therefore using this formula we can establish an universal unit for the measurement of length.

The universal unit for the length in the Lobachevskii geometry as $2\alpha = 1$ radian:

 $D = -2\log(\tan(1/4)) \sim 2.73030\ldots$

Pseudosphere

Coordinates on the surface of a unit sphere $x^2 + y^2 + z^2 = 1$:

$$x = \cos(\phi)\cos(\theta), \quad y = \sin(\phi)\cos(\theta), \quad z = \sin(\theta).$$

An equation for a pseudosphere in pseudo Euclid space with metrics $l^2 = t^2 - x^2 - y^2$ is a surface defined by equation $t^2 - x^2 - y^2 = 1$ and the parametric form:

 $t = \cosh(\chi), \quad x = \cos(\phi) \sinh(\chi), \quad y = \sin(\phi) \sinh(\chi),$

The metrics on the pseudosphere:

$$(dl)^2 = (dt)^2 - (dx)^2 - (dy)^2 = -((d\chi)^2 + \sinh^2(\chi)(d\phi)^2).$$

Gnomonic projection

Define the coordinate on the unit circle as (u, v). The Gnomonic projection of the upper side hyperboloid onto the unit disc M.

$$\frac{x}{t+1} = \frac{t+1}{1}, \quad \frac{y}{t+1} = \frac{t+1}{1}.$$
Therefore

x = (t + 1)u, y = (t + 1)v. The variable t depends on the variables (u, v):

$$t^{2} - (t+1)^{2}u^{2} - (1+t)^{2}v^{2} = 1,$$

$$(1 - u^{2} - v^{2})t^{2} - 2(u^{2} + v^{2})t - (1 + u^{2} + v^{2}) = 0.$$

$$t = -1 + \frac{2}{1 - u^{2} - v^{2}}.$$

The hyperboloid and the Klein's model

As a result the following formulas connect the surface of the hyperboloid and the points of the gnomonic projection:

$$x = (t+1)u, y = (t+1)v, t = -1 + \frac{2}{1-u^2-v^2}.$$

To connect a geodesic line on the hyperboloid and chord in the Klein's disc model for the Lobachevkii geometry one should make additional evaluations.

Bibliography

- 1 Н.И. Лобачевский, «О началах геометрии» (1829—1830), «Казанский вестник»
- 2 Felix Klein, Uber die sogenannte Nicht-Euklidische Geometrie. 1871
- 3 B.A. Dubrovin, A.I. Fomenko, S.P. Novikov, Modern Geometry — Methods and Applications
- 4 H.S.M. Coxeter, Non-Euclidean geometry.