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Axiom about existence of segment with given

length

The length
of the interval between origin O(0, 0) and point
X (x , 0). due to the formula for the distance:

d =

∣∣∣∣log

(
−1− 0

−1− x
:

1− 0

1− x

)∣∣∣∣ = − log

(
1− x

1 + x

)
.

So, one can construct an interval for given
distance.
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Axiom of existence of given triangle

Let us consider the triangle ABC .
The axiom said
that there exist an equivalent triangle
A1B1C1 on a given straight line a and
given points {A1,B1} ∈ a and the point
C1 belongs to given side of the line a.
The same axiom has the Klein's
model of the Lobachavskii geometry.
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Axiom of parallel lines in Lobachavskii geometry

There exist a line a and
a point A 6∈ a such that two
di�erent lines pass through
the point A and non-intersect
with given line a.

Lemma. So uncountable numbers of lines pass through the
point A and do not intersect with the line a.
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Proof of existence diverge lines

Let a1 and a2
be two lines and a12 ∪ a = ∅.
Consider points B1 ∈ a1
and in that side with respect
to the point A and a point
B ∈ a such that the point
B2 = (B ,B1) ∩ a2 belongs
to the interval [B1,B].
For every point M ∈ (B1,B2)

the straight line (A,M) 6∈ a because in an opposite case to
intersect the straight line a the straight line (A,M) should
cross the line a2 in two di�erent points in the point A and in
one another point.
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Parallel lines in the Klein's model

Set us de�ne a straight line a′ as a parallel line to given line
a if such straight line is a border line in the set of lines which
do not intersect to the line a.
Other lines which do not intersect with the line a are called
divergent lines.
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A Lobachevskii function

Let us consider the given straight line a and their parallel line
a′ which passes trough the point A 6∈ a. De�ne an acute angle
λ between a parallel line a′ and an orthogonal line passed
trough the point A as an angle of parallelism.
Lemma. The angle of parallelism is uniquely de�ned.
Proof. The angular value can be obtained if one consider the
vertex of the angle of parallelism as a central angle. In this
case both angles of parallelism have the same angular value.
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A Lobachevskii function

Lemma. The angle of parallelism depends on a distance
between the point A and the straight line a.
A function de�nes the dependence an angle of parallelism of
the distance between a point A and given straight line a is
celled a Lobachevskii function:

cos(α) = x , d = − log

(
1− x

x + 1

)
, e−d =

1− x

x + 1
,

so,

xe−d + e−d = 1− x , x(e−d + 1) = 1− e−d , x =
1− e−d

1 + e−d
.

As a result we obtain:

x =
ed/2 − e−d/2

ed/2 + e−d/2
, x = tanh

(
d

2

)
.
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Lobachevskii function and unit of the length

The formula for the Lobachevskii function looks like:

Π(d) = arccos

(
tanh

(
d

2

))
and the inverse function is:

d = − log

(
1− cos(α)

1 + cos(α)

)
= −2 log

(
tan

(α
2

))
, 0 < α < π/2.

This formula connects the length and angle. For the angle we
have a natural measurement which is a radian. Therefore using
this formula we can establish an universal unit for the
measurement of length.
The universal unit for the length in the Lobachevskii geometry
as 2α = 1 radian:

D = −2 log(tan(1/4)) ∼ 2.73030 . . . .
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Pseudosphere

Coordinates on the surface of a unit sphere x2 + y 2 + z2 = 1:

x = cos(φ) cos(θ), y = sin(φ) cos(θ), z = sin(θ).

An equation for a pseudosphere in pseudo Euclid space with
metrics l2 = t2 − x2 − y 2 is a surface de�ned by equation
t2 − x2 − y 2 = 1 and the parametric form:

t = cosh(χ), x = cos(φ) sinh(χ), y = sin(φ) sinh(χ),

The metrics on the pseudosphere:

(dl)2 = (dt)2 − (dx)2 − (dy)2 = −((dχ)2 + sinh2(χ)(dφ)2).

Axioms of the Klein's model Parallel lines Projection on the absolute Bibliography



Klein's model of Lobachevskii geometry and pseudosphere

Gnomonic projection

De�ne the coordinate on the
unit circle as (u, v). The Gnomonic
projection of the upper side
hyperboloid onto the unit disc M .

x

t + 1
=

t + 1

1
,

y

t + 1
=

t + 1

1
.

Therefore:
x = (t + 1)u, y = (t + 1)v . The variable t depends on the
variables (u, v):

t2 − (t + 1)2u2 − (1 + t)2v 2 = 1,

(1− u2 − v 2)t2 − 2(u2 + v 2)t − (1 + u2 + v 2) = 0.

t = −1 +
2

1− u2 − v 2
.
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The hyperboloid and the Klein's model

As a result the following formulas connect the surface of the
hyperboloid and the points of the gnomonic projection:

x = (t + 1)u, y = (t + 1)v , t = −1 +
2

1− u2 − v 2
.

To connect a geodesic line on the hyperboloid and chord in
the Klein's disc model for the Lobachevkii geometry one
should make additional evaluations.
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