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al-Haytham, Saccheri, Lamber

The Euclid's V postulate

I Al-Haytham about 1000 AD considered imaginary
rectangles with one non-right angle. He tried to �nd
contradiction an by this approach to prove V Euclid's
postulate.

I Saccheri, whose work was published at 1733, tried to
prove V Euclid's postulate using a contradict supposition.
He prove few theorem in such way and assumed that he
had found the contradictions.

I Later Lambert, whose work was published at 1786,
understood the case with obtuse angle is connected to
spherical geometry where the largest circles on the sphere
considered instead of straight-lines.
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Lobachavskii, Bolyai, Riemann

I Lobachavskii (1829) and Bolyai (1832) independently
published their works concerning the non-Euclid geometry,
where V postulate was changed by opposite one.

I Later at 1865 B.Riemann found unique de�nition on
hyperbolic and spherical geometry.
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Klein' model of Lobachevskii geometry

At 1871 year Felix Klein published work where mathematical
model of the Lobachevskii geometry was proposal.
Let us consider an interior of a circle U such that x2 + y 2 = 1
and two points A(xA, yA) and B(xB , yB) into this circle.

I A point in Klein's model of the Lobachevskii geometry is
a point of interior of the unit circle.

I A straight line in the model is a chord of the unit circle.

I Axioms of a belonging and an order are the same as in
Euclidian geometry.
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A straight line in the Klein's model

I If xA 6= xB and yA 6= yB , then these points are on the
straight-line L is de�ned as follows x−xB

xA−xB
= y−yB

yA−yB
.

I If xA 6= xB and yA = yB then the straight-line L is y = y1.

I If xA = xB and yA 6= yB then the straight-line L is x = xA.

De�ne L ∩ C = {C (xC , yC ),D(xD , yD)}. For de�nitely let us
assume xC < xD , xA 6= xB , and yC < yD in opposite case.
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A distance between two points

The distance between two
di�erent points is de�ned by follows rule:

|AB | =
∣∣∣∣log(xC − xA

xC − xB
:
xD − xA
xD − xB

)∣∣∣∣ , xA 6= xB ;

|AB | =
∣∣∣∣log(yC − yA

yC − yB
:
yD − yA
yD − yB

)∣∣∣∣ , yA 6= yB .

here C (xC , yC ) and D(xD , yD) are points on the circle
x2 + y 2 = 1 and the straight-line (A,B).
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Klein's model of Lobachevskii geometry

Consider 3 measure axioms.
I It is easy to see next equalities:

A 6= B then |AB | > 0, A = B then |AB | = 0.

I Assume for de�niteness that xA < xB . Let E be
E ∈ [A,B] and [A,B] = [A,E ] ∩ [E ,B]

|AE |+ |EB | = log

(
xC − xA
xC − xE

:
xD − xA
xD − xE

)
+

log

(
xC − xE
xC − xB

:
xD − xE
xD − xB

)
= log

(
xC − xA
xC − xB

:
xD − xA
xD − xB

)
= |AB |.

I The triangle inequality, which are: if E be E 6∈ [A,B],
then |A,E |+ |E ,B | > |A,B |, will be proved below.
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The cross ratio of four intervals

Let us consider two fractions. First one looks like:

|C1A1|
|C1B1|

=
SC1A1P

SC1B1P
=

|PC1||PA1| sin(A1PC1)

|PC1||PB1| sin(B1PC1)
=

|PA1| sin(A1PC1)

|PB1| sin(B1PC1)
,

and the same for another one fraction:

|D1A1|
|D1B1|

=
|PA1| sin(A1PD1)

|PB1| sin(A1PB1)
.

So, the following cross ration depends on the angles:

|C1A1|
|C1B1|

:
|D1A1|
|D1B1|

=
sin(A1PC1)

sin(B1PC1)
:
sin(A1PD1)

sin(A1PB1)
.

Due to the equivalence of the angles on the vertex P:

|C1A1|
|C1B1|

:
|D1A1|
|D1B1|

=
|C2A2|
|C2B2|

:
|D2A2|
|D2B2|

.
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The triangle inequality

Due to the cross ratio:

|A2A|
|A2C |

:
|AC1|
|CC1|

=
|A′A|
|A′C ′|

:
|B ′A|
|B ′C ′|

and

|B2B |
|B2C |

:
|C2B |
|C2C |

=
|A′C ′|
|A′B |

:
|B ′C ′|
|B ′B |

.

Now one should prove∣∣∣∣log ( |A′A||A′C ′|
:
|B ′A|
|B ′C ′|

)∣∣∣∣+ ∣∣∣∣log ( |A′C ′||A′B |
:
|B ′C ′|
|B ′B |

)∣∣∣∣ >∣∣∣∣log( |A1A|
|A1B |

:
|B1A|
|B1B |

)∣∣∣∣ .
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Transformations: rotation

Let us consider two di�erent transformations of the circle.

I A rotation around of the origin is de�ned by following
formulas:

x ′ = x cos(α)− y sin(α),
y ′ = x sin(α) + y cos(α).

I Here we must notice that the formula for the distance

independent on an angle, therefore the rotation concerns

distance between two points.
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Transformations: motion

The motion is de�ned by following formula:

x ′ =
x
√

1− β2

1 + βy
, y ′ =

y + β

1 + βy
, β ∈ (−1, 1).

The inverse transformation looks like:

x =
x ′
√
1− β2

1− βy ′
, y ′ =

y − β
1− βy ′

.

The motion remains the sign of coordinate x , but change the
scale and move the point A(x , y) up or down with respect of
the sing of parameter β.
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Transformations: properties of the motion

I The motion remains all points in the circle. Indeed:

x ′2 + y ′2 − 1 =
(1− β2)(x2 + y 2 − 1)

(1 + βy)2
.

This expression is equal to zero if x2 + y 2 = 1 and less
than zero if x2 + y 2 < 1.

I The motion maps a straight line Ax + By = C on

straight line A′x ′ + By ′ = C ′.
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Transformation: properties of the motion

I The motion remains an order of points on a

straight line. To prove this let us consider a points on
straight line y = kx + c where |c | < 1. Then:

dx ′

dx
=

d

dx

x
√
1− β2

(1 + β(kx + c)
=

(cβ + 1)
√

1− β2

(kxβ + cβ + 1)2
> 0.

So the order does not change for the coordinate x . The
same we can show for the transformation on the y
coordinate:

dy ′

dy
=

1− β2

(1 + βy)2
> 0.
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Transformation: properties of the motion

I The motion remains the distance between every

two points. To prove this one should use the formula for
x ′ where y and x are de�ned by the straight line (A,B),
like y = kx + c , and formula for the distance.
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Angular measure

Let us postulate the angular measure of every angle ABC with
a vertex B are the same for the the angular measure of an
central angle. A′OC ′ which are obtained by rotation and
motion of the angle ABC .
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The triangle A(0, 1/2),B(−1/2, 0),O(0, 0)

The angular value AOB = π/2. To �nd the angular value of
OAB one should move the point A(0, 1/2) into (0, 0) using
the motion:

y ′ =
y − 1/2

1− y/2
, x ′ =

x
√

1− 1/4

1− y/2
.

So, A′(0, 0), B ′
(
−
√
3/4,−1/2

)
, O ′(0,−1/2). Then the

angular value of O ′A′B ′:

arctan

(√
3

2

)
< π/4.

The angular value for O ′B ′A′ is equal to angular value of
O ′A′B ′. As result we get the sum of angular values of vertexes
for the triangle A,B ,O is less than π.
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