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Zeno (V century BC)

Figure: Zeno shows to his
students doors to Truth and Lay.
Fresco in Escorial Library, Spain

The known aporia about
Achilles and a turtle. If
the turtle is behind Achilles
then he do not catch it.
Generally we consider
two different problems.

1 First one
is a convergence of time
series to some value.

2 Second one is about
representation of the time interval like a lengthened
object and possibility to change it on a sequence of
points, which do not have a length.
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Euler and Clairaut 1747-1754

When one studied
a motion of a perigee of the Moon
it was found that this motion does not
obey to the universal law of gravitation.
However accuracy calculations
which consider a three bodies system
like the Sun, the Earth and the Moon,
which was made by Clairaut, show that
taking into account more terms of the
perturbation theory give a result which is
convince the universal gravitational law.
For these calculations Clairaut awarded
by special prize Russian academy of

Sciences.
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Leverrier and Adams 24.09.1846

I The planet Uranus was the first planet of the solar system
discovered using a telescope. However, its motion does
not obey exactly predicted by Newton’s law of attraction.

I A well-known story is how the French mathematician
Leverrier calculated the orbit of this hypothetical planet
and predicted the area in the firmament in which it can
be observed.

This story one can see in Scientific American, 2005, n3,
p.52-59
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Leverrier and Einstein from 1859 to 1915

Figure: The picture
from the work by
Leverrier about a
motion of the
Mercury.

The
anomalous motion of Mercury’s perihelion
was known. Leverrier investigated the
properties of motion perturbations. Up
until 1915, there were false discoveries of
planets responsible for these disturbances.
In 1915, A. Einstein showed that
the motion of the perihelion of Mercury
can be explained within the framework
of the general theory of relativity.
(Einstein A. Explanation of the motion
of the perihelion of Mercury in the
general theory of relativity // Einstein’s
proceedings. volume 4. - T. I. - pp.
439-447.)
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Quasi-classical approach 1926 -. . .

Relations between quantum mechanics and classical mechanics
can be obtained, in particular, within the framework of the
quasi-classical approximation.

I A rapidly oscillating solution of the Schrodinger equation
is considered.

I The decomposition is constructed by a small parameter -
the Planck constant.

I Within the framework of this approach, both the laws of
linear optics and the equations of motion of Hamiltonian
mechanics are obtained.
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Synchronization from the pendulum to chaos

I Synchronization of the pendulum clock

I Synchronization of breathing in ventilation systems

I Synchronization of chaotic oscillations for hidden signal
transmission
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Moivre-Stirling formula, 1730

Moivre presented his work, in which,
in particular, he found an approximate
formula for the sum of logarithms

N∑
k=1

lg(k) ∼ N log(N)−N log(e)+
1

2
log(n)+C+. . .

and presented
calculations in the form of tables.
Stirling in
the same 1730 led the calculation of the
constant with the Moivre formula. This
constant turned out to be equal to

√
2π.
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Stirling series

In Stirling’s formula, only the first term is usually calculated.
However , in its full form , this formula contains a number of:

n! ∼
√

2πn
(n
e

)n
exp

(
∞∑
k=1

B2k

2k(2k − 1)n2k−1

)
.

Here B2k ∼ (2k)!
(2π)2k

is the the Bernoulli number and its growth
rate at k →∞.
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Bayes on the divergence of Stirling series (1763)

Bayes in 1763 noticed
that the series in Stirling’s formula
diverges, although the first few
terms decrease one after another,
so that their calculation leads to an
improvement in the approximation.
However, the full series diverges.
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Euler’s solution for DU

φ(x) ∼ x − x2 + 2!x3 − · · ·+ (−1)n−1(n − 1)!xn + . . . .

x2φ′ + φ = x2(1− 2!x + 3!x2 + · · ·+ (−1)n−1n!xn−1 + . . . ) +

(x − x2 + 2!x3 + · · ·+ (−1)nn!xn+1 + . . . ) = x .

Hence:

x2φ′ + φ = x . φ = ce1/x + e1/x
∫ x

0

e−1/t
dt

t
.

t =
x

1 + wx
,

φ

x
=

∫ ∞
0

e−wdw

1 + xw
.
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From Abel (1828) to Poincare (1892)

Abel (1828) about divergent series: ”It is shameful to base
any proof on them” (quoted by Ramis J.P. Divergent series and asymptotic theories).
Poincare: ”consider two series whose common term has the
form:

1000n

n!
and

n!

1000n
.

Geometers will say that the first one diverges, and quickly
. . . Astronomers, on the contrary, will be the first divergent
. . . , and the second converging.” (A. Poincare, New Methods
of Celestial Mechanics, Vol. 2).
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Definition of Poincare

Consider a divergent series:

∞∑
k=0

fk(x)µ
k ,

denote

φp(x , µ) =

p∑
k=0

fk(x)µ
k .

If the condition is met:

lim
µ→0

φ(x ,mu)− φp(x , µ)
µp

= 0

then the series is an asymptotic representation of the function

φ(x , µ) ∼
∞∑
k=0

fk(x)µ
k .
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The existence of a function with a given

asymptotic expansion

Consider the series

f0 + f1x +
∞∑
k=2

fkx
k

(
1− exp

(
− 1

2k |fk |x

))
. (1)

I The series (1) at x → +0 is asymptotically equivalent to
the series f0 + f1x + f2x

2 + . . . .
I Row (1) converges for 0 < x < 2, since:∣∣∣∣∣

∞∑
k=2

fkx
k

(
1− exp

(
− 1

2k |fk |x

))∣∣∣∣∣ <
∞∑
k=2

|fk |
xk

2k |fk |x
=
∞∑
k=2

xk−1

2k
.
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The asymptotics of the integral, an example from

the book by F.Olver

∫ ∞
0

e−xt

1 + t
dt =

∫ ∞
0

e−xt
(
1− t + t2 + · · ·+ (−1)ntn + . . .

)
dt =

1

x
− 1

x2
+

2!

x3
− 3!

x4
+ · · ·+ (−1)n−1

(n − 1)!

xn
+ . . . .

The series diverges, but if we take x = 10 and calculate the
value of the integral numerically: 0.09156 and from the
resulting formula by four terms:

0.1− 0.01 + 0.002− 0.0006 + 0.00024− 0.00012 = 0.09152

The answer is close to the correct one.
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An example from the book by F.Olver

∫ ∞
0

e−xt

1 + t
dt =

∫ ∞
0

e−xt
(

1− t + t2 + · · ·+ (−1)n
tn

1 + t

)
dt =

1

x
− 1

x2
+

2!

x3
+ · · ·+ (−1)n−1

(n − 1)!

xn
+ (−1)n

∫ ∞
0

tne−xt

1 + t
dt

∫ ∞
0

tne−xt

1 + t
dt <

∫ ∞
0

tne−xt

1 + t
dt =

n!

xn+1
.

We can use a segment of a series of such length, as long as
each subsequent member of the series is smaller than the
previous one.
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The asymptotics of the sum of the series. Example

of A.M.Ilyin and A.R.Danilin

Calculate the sum of the series with an accuracy of three
digits:

∞∑
k=2

1

n ln(n)

It follows from the Cauchy integral sign that the series
converges. Let’s estimate the remainder of the row from
below:

∞∑
k=m

1

n ln(n)
>

∫ ∞
m+1

dn

n ln(n)
=

1

ln(m + 1)

That is, for three significant digits, you need ln(m + 1) sin 103

or m > e1000 > 10300. The age of the universe is estimated as
1018sec.
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The asymptotics of the sum of the series. Example

of A.M.Ilyin and A.R.Danilin

∞∑
k=2

1

n ln(n)
∼

m∑
k=2

1

n ln(n)
+

1

ln(m + 1/2)
−

1

24

(
1

(m + 1/2)2 ln2(m + 1/2)
+

2

(m + 1/2)2 ln3(m + 1/2)

)
The error is estimated as follows (1/2)m−2.
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Fresnel’s integral

I (x) =

∫ ∞
x

sin(y 2)dy . (2)

∫ ∞
x

sin(y 2)dy = −
∫ ∞
x

d cos(y 2)

2y
=

cos(x2)

2x
−∫ ∞

x

d sin(y 2)

4y 3
=

cos(x2)

2x
+

sin(x2)

4x3
+

∫ ∞
x

3d cos(y 2)

8y 5
.
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∫ ∞
x

sin(y 2)dy ∼ cos(x2)

2x

∞∑
n=0

(−1)n
3× 5× 7× · · · × (4n − 1)

22n ∗ x4n
+

sin(x2)

4x3

∞∑
n=0

(−1)n
3× 5× 7× · · · × (4n + 1)

22nx4n
. (3)

an+1

an
= −(4n + 1)(4n + 3)

4x4
= 0, x →∞;

bn+1

bn
= −(4n + 5)(4n + 7)

4x4
= 0, x →∞;
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∫ ∞
x

sin(y 2)dy =

cos(x2)

2x

N∑
n=0

(−1)N
3× 5× 7× · · · × (4n − 1)

22nx4n
+

sin(x2)

4x3

N∑
n=0

(−1)N
3× 5× 7× · · · × (4n + 1)

22nx4n
+

+O(x−4N−2),
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∫ ∞
x

sin(y 2)dy =√
π

2
−
∞∑
n=0

(−1)n x4n+3

(4n + 3)× (2n + 1)!
. (4)

To calculate the Fresnel integral at x = 10 with an accuracy of
0.01, more than 135 terms of the series are needed:

104N+3

(4N + 3)× (2N + 1)!
≤ 10−2

or
104N+5 ≤ (4N + 3)× (2N + 1)!

log(4N + 3) +
2N+1∑
k=1

log(k)− (4N + 5) log(10) ≥ 1.

N > 135.
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Riemann’s theorem on summation of conditionally

convergent series

Let the series
∑∞

k=1 ak conditionally converges. Then ∀Z
∃σ(k):

∑∞
k=1 aσ(k) = Z .

An example. ak = (−1)k/k . Let us show that one can
construct σ(k) for Z = 1.5:

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
+

1

13
+

1

15
− 1

4
+ · · · =

1.5(3)− 0.5 + 0.4(884670)− 0.25 + . . . .
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Summation

by Chezaro:

S = lim
n→∞

1

n

n∑
n+1

sn, sn =
n∑

k=1

ak .

By Borel:

S =

∫ ∞
0

e−t
∞∑
n=0

tn

n!
an, A(z) =

∞∑
k=0

akz
k .
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Example

Let us consider a divergent series

S =
∞∑
n=0

(−1)n.

The sum of this series by Chezaro’s rule:

S = lim
n→∞

1

n

n∑
k=1

k∑
j=0

(−1)j = lim
2n→∞

n

2n
=

1

2
.

The sum of this series by the Borel’s rule:

S =

∫ ∞
0

e−t
∞∑
n=0

tn

n!
(−1)ndt =

∫ ∞
0

e−2tdt =
1

2
.
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Euler’s example

Euler’s example:

A(z) =
∞∑
n=0

n!(−1)nzn

. This series does not converge by Chezaro, but converges by
Borel’s rule for summation:∫ ∞

0

e−t
∞∑
n=0

(−1)n
tn

n!
n!(−1)nzndt =∫ ∞

0

e−t
∞∑
n=0

(tz)ndt =

∫ ∞
0

e−tdt

1 + tz
.
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