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Integral principles and variational calculus
Second Newton’s law
Lagrange equations
Lagrangian of a second kind
Hamilton principle
Lebesgue integral
Sobolev space



Second Newton’s law for conservative system

Three Newton’s laws made possible a sunrise of mathematical
analysis at consequence centuries.
As system of equations for moving particles can be wrote as
follows:

mix
′′
i = Xi ,

miy
′′
i = Yi ,

miz
′′
i = Zi . (1)

Here i = 1, . . . ,N, mi is a mass of i-th particle, (xi , yi , zi ) are their
coordinates and (Xi ,Yi ,Zi ) is coordinates of a force for i-th
particle. A dimension of the system is equal 3N.



Constrains

In general the particles have geometric constrains like ropes, joints
and etc.. Such constrains can be written as equations:

φs(x1, y1, z1, . . . , zn, t) = 0, s = 1, . . . ,m. (2)

Every geometric constrain decreases a degree of freedom. A s a
result number of the degrees of freedom is equal to dimension of a
configuration space of the system (1) with additional constrains
(2) is equal to 3N −m.
For simplicity we will consider only the geometric constrains and
kinematic constrains became out of our attention.



Examples

The bead with mass m on
a rod with spring stiffness coefficient k looks like

mx ′′ = −k(x − x0), y = 0, z = 0.

It is important to say a form of this equation
depends on coordinate system.



Examples

A pendulum with mass m on a rod length
l which is jointed l in a gravitational field
g can be defined by a system of equations:

mx ′′ = mg cos(φ) sin(φ),

my ′′ = mg −mg cos2(φ)

with geometrical constrain:

x2 + y2 = l2, z = 0.

More convenient
form of this equation looks like follows:

φ′′ +
g

l
sin(φ) = 0.

This shows the Newton’s equations are non-universal for defining
of motion for certain mechanical systems.



Kinetic and potential energy

Let us multiply by x ′i , y ′i and z ′i consequently both parts of the
Newton’s equations and sum all equations for any particles. As a
result we get:

d

dt

n∑
i=1

(
mi

2

[
(x ′i )

2 + (y ′i )
2 + (z ′i )

2
])

=
n∑

i=1

(
Xix
′
i + Yiy

′
i + Ziz

′
i

)
.

The left-hand side of the formula contains a derivative of kinetic
energy T on independent variable t.
In the right-hand side we will consider the forces Pi = (Xi ,Yi ,Zi ),
which depend on coordinates only. In this case the right-hand side
is a derivative of a potential energy with respect to t.

dU

dt
=

n∑
i=1

(
∂U

∂xi
x ′i +

∂U

∂yi
y ′i +

∂U

∂zi
z ′i

)
.

Here U = U(x1, y1, z1, . . . , zn) is potential energy .



Lagrangian

Define
L(x , y , z , x ′, y ′, z ′) = T − U.

The function L is called Lagrangian. This definition can be used
for getting the equation for motion:

d

dt

(
∂L

∂x ′i

)
− ∂L

∂xi
= 0,

d

dt

(
∂L

∂y ′i

)
− ∂L

∂yi
= 0,

d

dt

(
∂L

∂z ′i

)
− ∂L

∂zi
= 0.

This form of equations for motion were obtained by Lagrange at
1788 year. This equations are called the Lagrange equations of
first kind.



The Lagrangian equations with forces of constrains

If the system have additional constrains:

fi (x1, . . . , zN) = 0, i = 1, . . . , k,

then one should add an additional terms which are reactions of the
constrains on i-th particle X ′i ,Y

′
i ,Z

′
i .

The Lagrangian equations look like:

d

dt

(
∂L

∂x ′i

)
− ∂L

∂xi
= X ′i ,

d

dt

(
∂L

∂y ′i

)
− ∂L

∂yi
= Y ′i ,

d

dt

(
∂L

∂z ′i

)
− ∂L

∂zi
= Z ′i , i = 1, . . . ,N.



The forces of constrains

The force connected with the j-th constrain defined by a gradient:
(∂fi/∂x , ∂fi/∂y , ∂fi/∂z).
Then a sum of forces on i-th particle:

X ′i =

(
λ1
∂f1
∂x

+ · · ·+ λk
∂fk
∂x

)∣∣∣∣
xi ,yi ,zi

,

Y ′i =

(
λ1
∂f1
∂y

+ · · ·+ λk
∂fk
∂y

)∣∣∣∣
xi ,yi ,zi

,

Z ′i =

(
λ1
∂f1
∂z

+ · · ·+ λk
∂fk
∂z

)∣∣∣∣
xi ,yi ,zi

.

fj(x1, . . . , zN) = 0, j = 1, . . . , k .

Here λj are Lagrange multipliers.



The Lagrangian with constrains

L = T − U −
k∑

j=1

lj fj .

The number of independent variables is 3N + k.
The invariant form of the equations:

d

dt

(
∂L

∂q′i

)
− ∂L

∂qi
= 0,

where new independent variables qi are qi = xi , qi+1 = yi , qi+2 =
zi , i = 1, . . . ,N, q3N+j = lj , j = 1, . . . , k .

I To construct the Lagrangian of first kind one should find the
kinetic energy, potential energy and constrains.

I The equations of motion are defined in invariant form.



Example

The first kind Lagrangian for a pendulum looks like:

L =
m

2
(x ′2 + y ′2) + mgly + λ(x2 + y2 − 1).

The equations of motion are:

mx ′′ − 2λx = 0,

my ′′ −mgl − 2ly = 0,

x2 + y2 − 1 = 0.



Lagrangian of the second kind

Let us define curvilinear coordinates q = (q1, q2, . . . , qn). The
coordinates of i-th particle q:

xi = fi (q, t), yi = gi (q, t), zi = hi (q, t). (3)

Notice

∂x ′i
∂q′r

=
∂

∂q′r

(
∂fi
∂q1

q′1 + · · ·+ ∂fi
∂qn

q′n +
∂fi
∂t

)
=

∂fi
∂qr

. (4)

Let us multiply left-hand side of the Newton equations (1) by
∂x ′i /∂q′r , ∂y ′i /∂q′r and ∂z ′i /∂q′r , and the right-hand side multiply
by ∂fi/∂qr , ∂gi/∂qr and ∂hi/∂qr then add these equations as i :∑
i

mi

(
x ′′i
∂x ′i
∂q′r

+y ′′i
∂y ′i
∂q′r

+z ′′i
∂z ′i
∂q′r

)
=
∑
i

(
Xi
∂fi
∂qr

+Yi
∂gi
∂qr

+Zi
∂hi

∂qr

)
.

(5)



Kinetic energy
The left-hand side can be considered as:

x ′′i
∂x ′i
∂q′r

=
d

dt

(
x ′i
∂x ′i
∂q′r

)
− x ′i

d

dt

(
∂xi
∂qr

)
=

d

dt

[
∂

∂qr

(
1

2
(x ′i )

2

)]
− ∂

∂qr

(
1

2
(x ′i )

2

)
.

The same formulas can be obtained for projections on Oy and Oz :∑
i

mi

(
x ′′i
∂x ′i
∂q′r

+ y ′′i
∂y ′i
∂q′r

+ z ′′i
∂z ′i
∂q′r

)
=

=
1

2

∑
i

mi
d

dt

[
∂

∂q′r

(
(x ′i )

2 + (y ′i )
2 + (z ′i )

2
)]
−

1

2

∑
i

mi
∂

∂qr

(
(x ′i )

2 + (y ′i )
2 + (z ′i )

2
)
.

The formula for kinetic energy is:

T =
1

2

∑
i

mi

(
(x ′i )

2 + (y ′i )
2 + (z ′i )

2
)

(6)



Kinetic energy
Obviously that due to (3) kinetic energy depends on q, and using
(6) and

x ′i =
n∑

r=1

∂fi
∂qr

q′r +
∂fi
∂t
, y ′i =

n∑
r=1

∂gi
∂qr

q′r +
∂gi
∂t

, z ′i =
n∑

r=1

∂hi

∂qr
q′r +

∂hi

∂t

(7)
kinetic energy depends on q′ as quadratic. Also we assume that T
does not depend on time.
Define the right-hand side of (5) as Qr , then

d

dt

[
∂T

∂q′r

]
− ∂T

∂qr
= Qr , r = 1, . . . , n. (8)

X =
∂V

∂x
, Y =

∂V

∂y
, Z =

∂V

∂z
.

In this case

Qr =
∂V

∂qr
.



Lagrangian of second kind

The function Lagrange looks like:

L = T − V .

Then the Lagrangian equations can be written as

d

dt

[
∂L

∂q′r

]
− ∂L

∂qr
= 0, r = 1, . . . , n.

These equations are called the Euler-Lagrange equation.



Hamilton principle

The functional

S =

∫ t1

t0

dt L(q, q′, t)

is called as action.
The Hamilton principle claims that the mechanical system should
get an extrema for the functional (1834):

S(q, q′) =

∫ t1

t0

dt L(q, q′, t)→ extr.



Variation of the functional
Let us consider δq = δq(t) and δq(t0)− δq(t1) = 0 as a small
smooth function which is called as infinitesimal variation.
A linear part of a difference with respect to δq is called variation of
the functional:

δS = S(q + δq, q′ + δq′)− S(q, q′).

The variation is follows:

δS =

∫ t1

t0

dt L(q + δq, q′ + δq, t)− L(q, q′, t) =∫ t1

t0

dt
∂L

∂q
δq +

∂L

∂q′
δq′ =

∂L

∂q′
δq′|t=t1

t=t0 +∫ t1

t0

dt

(
− d

dt

(
∂L

∂q′

)
+
∂L

∂q

)
δq.

The extremal value of S the functional reaches for the q = q(t)
such that:

− d

dt

(
∂L

∂q′

)
+
∂L

∂q
= 0.



Example. Double pendulum
Kinetic energy of the pendulum is:

T =
1

2
m1(l1φ

′
1)2 +

1

2
m2

(
(l1φ

′
1)2 + (l2φ

′
2)2 +

2l1l2φ
′
1φ
′
2 cos(φ1 − φ2)

)
;

potential energy can be written as follows:

V = −m1l1 cos(φ1)−m2(l1 cos(φ1)l2 cos(φ2)).

System of equations
for the double pendulum is follows:

m1l21φ
′′
1 + m2l22φ

′′
1 + m2l1l2φ

′′
2 cos(φ1 − φ2)−

m2l1l2φ
′
2(φ′1 − φ′2) sin(φ1 − φ2)−

(
−m1l1 sin(φ1)−

m2l1 sin(φ1)l2 cos(φ2)
)

= 0,

m2l22φ
′′
2 + m2l1l2φ

′′
1 cos(φ1 − φ2)−m2l1l2φ

′
1(φ′1 − φ′2) sin(φ1 − φ2)−
−m2l1 cos(φ1) sin(φ2) = 0.



Lebesgue integral

Let us consider a function f (x) and a measure µ of set x where
a < f (x) < b as µ(a < f (x) < b).
Slice an interval of values of f (x) on N pieces.
Define a sum:

S =
N∑
i=1

µ(yi < f (x) < yi+1).

The limit for such sum as N →∞:

lim
N→∞

N∑
i=1

µ(yi < f (x) < yi+1) =

∫ b

a
f (x)dx .

is called Lebesgue integral.



Examples of the Lebesgue integrals

I Let us consider a Dirichlet function:

f (x) =

{
1, x ∈ [0, 1] ∩Q;

0 x ∈ [0, 1]\Q.

This function does not integrabe in a Riemann sense but their
Lebesgue integral is equal zero:∫ 1

0
f (x)dx = 0.



Spaces of distributions

A solution of a Schroedinger equation is a distribution for which
only a squared module has a physical sense. Namely a probability
of a location for a quantum particle is equals:

P(a < x < b) =

∫ b

a
|Ψ(x , t)|2dx .

This means that the Ψ should be integrated with squared of the
module.

Definition
A space of functions which can be integrated with squared module
is called L2. A function u(x) ∈ L2[a, b] if∫ b

a
|u(x)|2 <∞.



Examples

Let us define φ(x) as a smooth and finite function of x .
Let us find a derivative of |x |:∫

d |x |
dx

φ(x)dx = |x |dφ
dx

∣∣∣∣∞
−∞
−
∫ ∞
−∞
|x |dφ

dx
dx =∫ 0

−∞
x

dφ

dx
dx −

∫ ∞
0

x
dφ

dx
dx =

−
∫ 0

−∞
φ(x)dx +

∫ ∞
0

φ(x)dx =∫ ∞
−∞

sgn(x)φ(x)dx .

Therefore:
d |x |
dx

= sgn(x).



Examples

Let us find a derivative of sgn(x):∫
d sgn(x)

dx
φ(x)dx = sgn(x)

dφ

dx

∣∣∣∣∞
−∞
−
∫ ∞
−∞

sgn(x)
dφ

dx
dx =∫ 0

−∞

dφ

dx
dx −

∫ ∞
0

dφ

dx
dx =

φ(0)− φ(−∞)− φ(∞) + φ(0) = 2φ(0).

Therefore:
d sgn(x)

dx
= 2δ(x),

where ∫ ∞
−∞

δ(x)φ(x)dx = 2φ(0).



Extrema of a functional

Let us consider solution of Schroedinger equation in the form:

Ψ(x , t) = e−iEt/~ψ(y), y = x/~.

The Schroedinger equation can be written as:

1

2

∂2ψ

∂y
− Eψ(y) = 0

This equation is a condition for an extrema of a functional:

F (ψ) =
1

2

∫ ∣∣∣∣∂ψ∂y

∣∣∣∣2dy + E

∫
|ψ(y)|2dy .



Variation of a functional

Let us assume for a simplicity that ψ(y) is a real and find a
variation:

δF = F (ψ + δψ)− F (ψ) =
1

2

∫ (
∂(ψ + δψ)

∂y

)2

dy +

E

∫
(ψ(y) + δψ)2dy − 1

2

∫ (
∂ψ

∂y

)2

dy + E

∫
ψ2(y)dy =∫

∂ψ

∂y

∂δψ

∂y
dy + 2E

∫
ψ(y)δψdy = 2

∫ (
− 1

2

∂2ψ

∂y2
+ Eψ

)
δψdy .

Therefore δF (ψ) = 0 if ψ is a solution of the equation:

1

2

∂2ψ

∂y
− Eψ(y) = 0.



Distributions and Sobolev space

A functional space of distributions u such that:∫ b

a

(
∂u

∂x

)2

dx +

∫ b

a
u2(x)dx <∞

is called Sobolev space H1
2 (a, b).

More general Sobolev spaces like Hk
2 are defined as

k∑
j=0

∫ b

a

(
∂ju

∂x j

)2

dx <∞.

The norm of Sobolev space define functional like a generalized
function which can be undefined at a countable set of points
x ∈ {xi}.
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