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Schroedinger equation
Schroedinger equation in a simplest form can be written as
ov h? 0w
h— = ———5 + V(x)V.
"ot 2m Ox?2 +V(x)

Here 7 is a Planck constant, m is a mass of a particle and V/(x) is
a potential field which defines the behaviour of the particle in a
classical mechanics.

P> Potential for a free particle is follows:
V(x) =0.

» Potential for a linear oscillator is
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V(x) = k—.
(x) = K

» Potential for an electron of hydrogen atom:



Typical parameters of quantum systems

> h~ 6.62607015 x 1073* J/Hz is the value of the Planck
constant;

> e~ 1.602 x 10719 Cis an electron charge;
> m~9.1x1073 kg is a mass of an electron;

» r~ 5292 x 107! m is a distance between the kernel and
electron (Bohr radius);

> ¢ ~ 8.8854 x 10712 F/m is a vacuum permittivity.



Wave motion

When we consider waves and its dependence on time we should
understand a direction of wave motion.
let us consider two different solutions of a Schroedinger equation
without external field:
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In the simplest case two different solutions can be written:
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The wave phase with the sign + is constant at line parallel by a
straight-line x = —t\/2m/E. This means the wave moves in a
negative direction with respect to x axis.

In contrast, the wave phase of the solution with — is constant on
all lines which are parallel by a straight-line x = t\/2m/E. This
wave moves in a positive direction with respect to the axis x.



A barrier as a potential

Let us consider the potential with a threshold shape.

0, —I/<x;
U(X) = u, _l S X S /,
0, I<x.

On left-hand side of the barrier a solution of the Schroedinger
equation looks as
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Here first term is a falling wave. This waves move to the barrier.
Second term is reflected wave, because this wave moves from the
barrier.

On right-hand side of the barrier a solution contains a transmitted
wave only:

v Tei(ftow),



Tunnel effect

The wave with the energy E for the Schroedinger equation looks
like: e
V= e_’(ﬁt)q/)(x).

In this case the one-dimension Schroedinger equation looks like:

h2 !
%w +(E - U(x))y = 0.

If u > E this means the energy to overcome this threshold is less
that the threshold level. For the classical particle does not be
passed through such threshold. Let us find a possibility to pass this
threshold for quantum one.



Falling and reflected waves

General solution before the threshold:

b = V2MEE | pe—iV2mE}

This formula contains the falling wave and reflected one.
At the threshold the solution has another form:

)= Ble\/2(u—E)m% + Bze—\/2(u—E)m%.

After the threshold the solution has transmitted wave only:

d} — Tei\/2mE% ]

Our problem is to find the transmitted and reflected waves.
Formally it means one should find the coefficients R and T.



A matching of the solutions

These solution and their derivatives of first order should be
matched at the point x = —/:

eflwl + Relwl — Bl eflk + BZ ekl7
iwe @ —juRe“ = kBe 'k — kB, e¥.

The same matching should be made at the point x = /:

B ekl ¢ B> ek — Te“"/,
kBie — kBye ™ = jwTe.

Here
1 1
W= 2mE, k:ﬁ\/2(u—E)m.

So we have four equations with four unknown values R, T, By, B>.
We are interested in R and T only.



The transmission coefficient

One can solve the system of four linear equations by hand or using
some computer algebra system.
The transmission coefficient have the following form:

T= & X
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The transmission coefficient exponentially decreases with respect
to width / and hight of the barrier u — E .



Oscillations in potential well
Let us consider oscillations in an infinite potential well x € (0, /).
The Schroedinger equation with additional boundary conditions is:
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A special solution which is periodic on time has a form:
W(x, t) = e nte(x).
A substitution into the Schroedinger equation yields:
n?
7¢/+ EY =0, 9lx=0=1|x=1=0.
m

Solution can be written for discrete set of energy E,:

=N 2
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h 2ml2 ’



A Schroedinger equation for quantum oscillator

A Schroedinger equation for quantum oscillator looks like:

LoV B 02W X2
ih— =
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A special solution which is periodic on time has a form:

W(x, t) = e rtap(x).

A substitution into the Schroedinger equation yields:

h2 " X2
— " — (- —E)yp=0.
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A connection with parabolic cylinder equation

Let us rewrite this equation in a standard form. For that we
substitute new independent variable £ = kx. In this case we obtain
the equation in the form:

h? k2d2¢) 2 (52 k2E>¢:O'
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Equate the coefficients at the second derivative and at the
brackets.
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It yields a standard form of the parabolic cylinder equation:
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Discrete values of energy of quantum oscillator

The bounded solutions of the parabolic equation with given value
of parameter a = n+ 1/2 look like:

n —£2/
0(e) = (1) (e : 2).

n!

Therefore the energy of bounded solutions has a discrete set:

h
En:—(n+1/2)ﬁ, neN.



Semiclassical approach
Let us consider a solution of the Schroedinger equation in the form:

W = A(x, t)ernS0t),

Substitute these formula for the solution into the Schroedinger

equation and eliminate the multiplier enSot)

oS _O0A 1 [0S\? hOSOA |1 8°S
1 ,0%A

Gather terms with power of 70 and eliminate the multiplier A, then:
1
—Se = =—(5)% + U(x),
e =5 (507 + U(x)
Terms with an order /! lead to the following equation:

1 1
Ay = ——5A, — —S5,A
m 2m



An eikonal equation

The non-linear equation for S is called eikonal equation. An
approach for solving such equation is used by differentiating and
considering an system of quasi-linear equation:

S5« = p, —pt= BPX + 0 U
m

Let us assume the dependence x = x(7) and t = t(7), where 7 is
new independent variable. This assumption gives for us new form
of the equation for p = p(x(7), t(7)):

dp  Opdt Opdx

dr " otdr | oxdr
The equation for p we will consider as an ordinary differential
equation for p(7):

d
l =pr+ BPX = _aXU'
dr m



Hamiltonian equations

This assumption yields the following sysytem of the equations:

o _p dp U
dr m dr  Ox

This system of equations can be derived as Hamiltonian equations

for the following Hamiltonian:

P
h(x, p) = > + U(x).
Recall that Hamiltonian equations for classical mechanics are:
o _oH dp_ oH
dr Op’  dt ox’

It is easy to see that the equivalence of these two system of
equations.



A convection equation

To show the connection between the classical particle and
quantum behaviour we show that the localized amplitude of the
distribution expanses on a trajectories of this Hamiltonian system.
The equation of order 7 defines an primary order term of
amplitude for the distribution:

1
aA=-PoaA_ZopA
m 2

The same assumption A = A(x(7), t(7)) leads to the following

equation:
dA
P _9.Aa+Pon
dr m
and JA )
— = ——0\pA.
dr 2 p

This shows that the characteristics for the function A are
trajectories of motion for the Hamiltonian system.
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