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Definition of measure for volume of 3-dimensional

body

A subset D of

R3 has a measurable 3D measure
if there exists a non-negative

real number V such that

Ve > 0, 3UJ_; By of rectangular

boxes By such that D C [ J B; and

i=1

Zn:‘B,| <V +e,
i=1

where | B;| denotes the volume
of the rectangular box B;. The
number V is called the 3D volume
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A Darboux criteria for the existence of the measure
for given 3D body

A subset D of R3 is measurable if and only if Ve > 0,
JA = U]_,;Ac and B = U}_, B, where Ay and By are
rectangular boxes, A C D C B and

[BAA| <e,

where |B \ A| denotes the 3D volume of the set difference
B\ A




A Darboux criteria for the existence of the measure
for given 3D body

A subset D of R3 is measurable if and only if Ve > 0,
JA = U]_,;Ac and B = U}_, B, where Ay and By are
rectangular boxes, A C D C B and

[BAA| <e,

where |B \ A| denotes the 3D volume of the set difference

B\ A.

In other words, a subset D of R3 is measurable if and only if it
can be enclosed by two finite unions of rectangular boxes with
arbitrarily close volumes.




A theorem about measurable of bounded 3d body
with measurable border surface

Let S = 9D be a smooth

" and bounded surface in R3. If S
is measurable as 2D surface, then
S has zero volume (3D measure).
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A theorem about measurable of bounded 3d body

with measurable border surface
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Let S = 9D be a smooth

and bounded surface in R3. If S

is measurable as 2D surface, then
S has zero volume (3D measure).
In other words, if S

is a smooth 2D surface in compact
K € R3, then its area is zero.

Proof. Let S be a smooth 2D surface in R3. Without loss of
generality, we can assume that S is contained in a compact set
K in R3. Let U; be a countable covering of K by open balls
such that the diameter of each ball is less than ¢, where ¢ > 0
is fixed. Let 5; = S N U; be the intersection of S with each

ball U;.
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Proof of the theorem about volume of smooth
surface.

Now, we have:
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Proof of the theorem about volume of smooth
surface.

Now, we have:
sclJsclJmi xo.q)

where [0, €] is the interval of length € in the z-direction.
Therefore, we have:
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Proof of the theorem about volume of smooth
surface.

Now, we have:
sclJsclJmi xo.q)

where [0, €] is the interval of length € in the z-direction.
Therefore, we have:

vol(S) < Z vol(D; % [0, €]) = ¢ Y vol(D;)

]

Triple integrals




Triple integrals

Proof of the theorem about volume of smooth
surface.

Now, we have:
5cU5cU i % [0,¢€])

where [0, €] is the interval of length € in the z-direction.
Therefore, we have:

vd(S)fQjE:vd(D;x [0,€]) =€ vol(D))

i

where vol(D;) denotes the area of the compact set D;. Since S
is contained in the compact set K, we have

> vol(D;) < vol(K) < oo.
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Proof of the theorem about volume of smooth
surface.

Therefore, we have:

vol(S) < eZvol(D;) < 00

i
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Proof of the theorem about volume of smooth
surface.

Therefore, we have:

vol(S) < eZvol(D;) < 00

i

Since € was arbitrary, this implies that vol(S) = 0. Therefore,
S has zero volume.




Counterexample. The Mundelbulb 3D fractal
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Let D be a bounded and measurable domain in R3 and let
f : D — R be a function. The triple integral of f over D is

denoted by
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D

and is defined as the limit of Riemann sums as the mesh size
approaches zero:
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Definition of triple integral

Let D be a bounded and measurable domain in R3 and let
f : D — R be a function. The triple integral of f over D is

denoted by
/// f(x,y,z)dxdydz,
D

and is defined as the limit of Riemann sums as the mesh size
approaches zero:

/// f(x,y,z)dxdy dz = lim Z f (&, Mijie, Ciik) A Vi,
D

max(A Vi )—0

where (fijk;nijka Cijk) & Vijky and Avijk = VO/(\/,'jk).
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Theorem about existence of triple integrals

(Existence of Triple Integral) Let D be a bounded and
measurable domain in R3, and let f : D — R be a function. If
f is continuous on D, then the triple integral

fff f(x,y,z) dx dy dz exists.
D




A proof of the existence theorem

Proof: We will prove the existence of the triple Riemannian
integral by showing that it can be approximated by a sequence
of triple Riemann sums.
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A proof of the existence theorem

Proof: We will prove the existence of the triple Riemannian
integral by showing that it can be approximated by a sequence
of triple Riemann sums.

Let P = {(x0, Y0, 20), (x1,¥1,21), - - -, (X, ¥, Zn) } be a partition
of D into n subdomains, such that each subdomain is a
rectangular box. Let Ax; = x; — x;_1, Ay; = y; — yj—1, and
Az, = z, — z,_1 be the lengths of the sides of the boxes.
Then the volume of each subdomain is AV = Ax;Ay;Az.
Let (X, ¥ix: Z) be a point in the ijk-th subdomain. Then the

u
triple Riemann sum for f(x,y, z) over the partition P is:

S(P.A) =D > %k ik Zis) A Vi

i=1 j=1 k=1




A proof of the existence theorem
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By the continuity of f, we can choose the points (X, yji, 27 )
in such a way that the difference between S(P, f) and the
triple Riemannian integral is arbitrarily small:
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A proof of the existence theorem

By the continuity of f, we can choose the points (X, yji, 27 )
in such a way that the difference between S(P, f) and the
triple Riemannian integral is arbitrarily small:

‘///Df(x,y,z)dV—S(P,f) <e

for any € > 0.

Therefore, by the definition of the limit, the triple Riemannian
integral [[[, f(x,y,z)dV exists, and is equal to the limit of
the sequence of triple Rlemann sums as the size of the
partition approaches zero.
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Example of a triple integral

JIf o000 by 2amariz =
X+2y+3z—-6=0

—3z/2 (6—2y—3z
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From Cartesian to polar coordinate system

Consider
an elementary plate of the area
on the plane in a polar coordinates.

A% / ds = rdrdo




From Cartesian to polar coordinate system

Consider
an elementary plate of the area
on the plane in a polar coordinates.

A% / ds = rdrdo

l AL

Consider an integral over an area
with rectifiable border:

fl oo~ f

Changing variables




Example of integration in polar coordinates

2 X
/ / ydydx =
o Jo




Example of integration in polar coordinates

2 X
/ / ydydx =
o Jo

/4 2/cos(¢)
/ / r?sin(¢)drd =
0 0

Changlng variables




Example of integration in polar coordinates

2 X
/ / ydydx =
o Jo
w/4  p2/cos(¢p)
/ / r?sin(¢)drd¢ =
0 0

/% 8sin (¢) 4
/0 3cos(gz5)3d¢ I
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Changing of variables in two dimensional integrals
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Changing of variables in two dimensional integrals

Let's
consider a smooth
2k 48 surface S defined
by a parametrization
X = X(u,v),
W where (u, v)
an are parameters in some
domain D C R2. The

elementary area of S at a point x(ug, vo) is given by:

= -7
X
ey K

=

dS = Hg X —Hdudv

where || - || denotes the Euclidean norm, and &%, 2% are the

partial derivatives of X with respect to v and v respectlvely




Changing of variables in two dimensional integrals

Now, suppose we have a change of variables

(u,v) = (u(r,s),v(r,s)). Let y = X(u(r,s), v(r,s)) be a new

parametrization of the surface S in terms of the new variables
(r,s). Then the partial derivatives of y with respect to r and s
are given by the chain rule:
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Changing of variables in two dimensional integrals

Now, suppose we have a change of variables
(u,v) = (u(r,s),v(r,s)). Let y = X(u(r,s), v(r,s)) be a new
parametrization of the surface S in terms of the new variables
(r,s). Then the partial derivatives of y with respect to r and s
are given by the chain rule:

dy 0XOu 0XOv
or  Ouor + ov Or
and

dy OXdu 0XOv

s duds  Ovos

Changing variables




Changing of variables in two dimensional integrals

Taking the cross product of these vectors, we have:

oy Oy  (O0udv  OudvyOx OX
EXE_( Os )

dros  dsor)ou” dv




Changing of variables in two dimensional integrals

Taking the cross product of these vectors, we have:
WXW_(W?V %m)ﬁfx&?
or  0s \ords 0Osor)ou  Ov
where we have used the fact that % X % is a constant vector
on the surface S.

Changing variables
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Therefore, the new elementary area dS’ in terms of the
variables (r,s) is given by:




Changing of variables in two dimensional integrals

Therefore, the new elementary area dS’ in terms of the
variables (r,s) is given by:

v
Y
or

LIPCY T LY
0s

d5' = | ords 0Os Or

Changing variables




Changing of variables in two dimensional integrals

Therefore, the new elementary area dS’ in terms of the
variables (r,s) is given by:
dudv  Oudv

oy

oy

where we have used the fact that the cross product of two
vectors has the same Euclidean norm as their determinant.




Changing of variables in two dimensional integrals

Therefore, the elementary area changes by a factor of

Ju Jv Ou Ov . .
525 — 52571 when changing variables from (u, v) to (r, s).




Changing of variables in two dimensional integrals

Therefore, the elementary area changes by a factor of

Gudv _ 9udv| \when changing variables from (u, v) to (r,s).
This is known as the Jacobian determinant of the change of
variables, and it appears in many areas of mathematics,

including multivariable calculus and differential geometry.
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Changing Cartesian to polar coordinate from
general point of view

The integral in Cartesian coordinates is given by:

X2 Y2
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We'll change the variables to polar coordinates, where
x = rcos(f) and y = rsin(6).
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Changing Cartesian to polar coordinate from
general point of view

The integral in Cartesian coordinates is given by:

X2 Y2
/ / f(x,y)dxdy
xi Iy

We'll change the variables to polar coordinates, where
x = rcos(f) and y = rsin(f). When we make this
transformation, the differential area element in polar
coordinates, ds, is given by:

ds = rdrdf




Changing Cartesian to polar coordinate from
general point of view

The Jacobian for the polar coordinates:

Ox

dx
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Changing Cartesian to polar coordinate from
general point of view

The Jacobian for the polar coordinates:

Ox  Ox .
5 %5l |cos(f) —rsin(0)| 5 Y
J= % ég‘ = lsin(6) rcos(h) = rcos”(0) + rsin“(0) = r

Changing variables




Changing Cartesian to polar coordinate from
general point of view

The Jacobian for the polar coordinates:

ox Ox 0) —rsin(0)
J=19r 99| = C.Os( = rcos?(0) + rsin?(f) = r
% %g‘ sin()  rcos() (0) (¢)
In this case:
) 6>
f(rcos(0),rsin(0))- _r  drdf
/r1 /91 Jacobian

Changing variables




Changing of variables in triple integrals

Consider a function f(x, y, z) defined on a region D in
three-dimensional space, and express the integral of f over D
in terms of a new set of coordinates (u, v, w), where
x=x(u,v,w), y =y(u,v,w), and z = z(u, v, w). Then the
triple integral can be written as:
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Consider a function f(x, y, z) defined on a region D in
three-dimensional space, and express the integral of f over D
in terms of a new set of coordinates (u, v, w), where
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triple integral can be written as:
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Changing of variables in triple integrals

Consider a function f(x, y, z) defined on a region D in
three-dimensional space, and express the integral of f over D

in terms of a new set of coordinates (u, v, w), where
x=x(u,v,w), y =y(u,v,w), and z = z(u, v, w). Then the

triple integral can be written as:
/// f(x,y,z)dV =
D

R R e s

where D’ is the region in the u, v, w coordinate system that
corresponds to the region D in the x, y, z coordinate system,
and J(u, v, w) is the Jacobian determinant of the
transformation.




Changing of variables in triple integrals

The Jacobian is given by:

pas S ;
4 v = |22
Ay o O(u, v, w) g

4x

N2l
N< K< IX

ov
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Changing of variables in triple integrals

The Jacobian is given by:

i A o
4 o) = || 5
i RCCAAT I

ax
The Jacobian measures the change

in volume due to the change of variables.

Changing variables
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Changing of variables in triple integrals

The Jacobian is given by:

i e e o
0{ J(u, v, W)E‘a(x’y 2) = & g ?LK’V
i | (vow)| | & B

The Jacobian measures the change
in volume due to the change of variables.

d(x,y,z)

———= | dudv dw.
d(u, v, w) Havaw

dV—‘

Changing variables




Example of changing to the spherical coordinates

Let a
* function f(x, y, z) be defined in Cartesian
coordinates (x, y, z).




Example of changing to the spherical coordinates

Let a
* function f(x, y, z) be defined in Cartesian
coordinates (x, y, z). Change to spherical
coordinates (r, 0, ¢), where r is the radial
distance from the origin, 6 is the polar

% angle measured from the positive z-axis,
and ¢ is the azimuthal angle measured
from the positive x-axis in the xy-plane.
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Example of changing to the spherical coordinates

The transformation
from Cartesian coordinates
to spherical coordinates is given by:
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Example of changing to the spherical coordinates

The transformation
from Cartesian coordinates
to spherical coordinates is given by:
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Example of changing to the spherical coordinates

The transformation
from Cartesian coordinates
to spherical coordinates is given by:

x =rsinfcos¢, y =rsinfsin¢, z= rcost

where

0<r<R,0<0<mand0<¢p<2m.
dxy.2) & & &

or 90 9
o(r,0,9) c)é 9z a?
or 900  0¢

sinffcos¢p rcostlcos¢p —rsinfsing
= [sinfsing rcosfsing rsinfcose | = rsiné.
cos —rsinf 0




Example of changing to the spherical coordinates

Therefore, the integral of f over the sphere of radius R
centered at the origin in spherical coordinates is given by:

27 T R
/ / / f(rsin®cos ¢, rsinfsin g, rcos) r’sinf drdd do
o Jo Jo




Example of changing to the spherical coordinates

Therefore, the integral of f over the sphere of radius R
centered at the origin in spherical coordinates is given by:

27 T R
/ / / f(rsin®cos ¢, rsinfsin g, rcos) r’sinf drdd do
o Jo Jo

where 0 < r < R, 0<6 <, and 0 < ¢ < 27. This integral
represents the same volume as the integral of f over the sphere
of radius R centered at the origin in Cartesian coordinates, but
it can be easier to evaluate in certain cases due to the
simplification of the integral limits and the Jacobian factor.
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Spherical coordinates

/// x2 4 y? + z%dx dy dz.
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Spherical coordinates

/// x? + y? + z%dx dy dz.
x2+y2+z2<4
/// x2 + y2 + z2dx dy dz =
x24y2422<16

/027r /_://22 /04 r® cos(¢)dr dyp dgp = /027r /_://22 64 cos(1)) dip dp =
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Spherical coordinates

/// \/mdx dy dz.
x2+y2+z2<4

Il ey sy
x2+y2+4+22<16

/027r /_://22 /04 r® cos(¢)dr dyp dgp = /027r /_://22 64 cos(1)) dip dp =

27
/ 128d1) = 2567.
0

Changing variables
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