
Triple integrals

Triple integrals

O.M. Kiselev
o.kiselev@innopolis.ru

Innopolis university

April 1, 2023

Triple integrals Changing variables

http://smartmechanica.ddns.net/OK
http://innopolis.university


Triple integrals

Triple integrals

Changing variables

Triple integrals Changing variables



Triple integrals

Definition of measure for volume of 3-dimensional
body

A subset D of
R3 has a measurable 3D measure
if there exists a non-negative
real number V such that
∀ε > 0, ∃ ∪n

k=1 Bk of rectangular

boxes Bk such that D ⊂
n⋃

i=1

Bi and

n∑
i=1

|Bi | < V + ε,

where |Bi | denotes the volume
of the rectangular box Bi . The
number V is called the 3D volume

of D, denoted by vol(D).Triple integrals Changing variables
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A Darboux criteria for the existence of the measure
for given 3D body

A subset D of R3 is measurable if and only if ∀ε > 0,
∃A = ∪nk=1Ak and B = ∪nk=1Bk where Ak and Bk are
rectangular boxes, A ⊂ D ⊂ B and

|B \ A| < ε,

where |B \ A| denotes the 3D volume of the set difference
B \ A.
In other words, a subset D of R3 is measurable if and only if it
can be enclosed by two finite unions of rectangular boxes with
arbitrarily close volumes.
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A theorem about measurable of bounded 3d body
with measurable border surface

Let S = ∂D be a smooth
and bounded surface in R3. If S
is measurable as 2D surface, then
S has zero volume (3D measure).
In other words, if S
is a smooth 2D surface in compact
K ∈ R3, then its area is zero.

Proof. Let S be a smooth 2D surface in R3. Without loss of
generality, we can assume that S is contained in a compact set
K in R3. Let Ui be a countable covering of K by open balls
such that the diameter of each ball is less than ε, where ε > 0
is fixed. Let Si = S ∩ Ui be the intersection of S with each
ball Ui .
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Proof of the theorem about volume of smooth
surface.

Now, we have:

S ⊂
⋃
i

Si ⊂
⋃
i

(Di × [0, ε])

where [0, ε] is the interval of length ε in the z-direction.
Therefore, we have:

vol(S) ≤
∑
i

vol(Di × [0, ε]) = ε
∑
i

vol(Di)

where vol(Di) denotes the area of the compact set Di . Since S
is contained in the compact set K , we have∑

i vol(Di) ≤ vol(K ) <∞.
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Proof of the theorem about volume of smooth
surface.

Therefore, we have:

vol(S) ≤ ε
∑
i

vol(Di) <∞

Since ε was arbitrary, this implies that vol(S) = 0. Therefore,
S has zero volume.
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Counterexample. The Mundelbulb 3D fractal

Stolen from Internet!
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Definition of triple integral
Let D be a bounded and measurable domain in R3 and let
f : D → R be a function. The triple integral of f over D is
denoted by ∫∫∫

D

f (x , y , z) dx dy dz ,

and is defined as the limit of Riemann sums as the mesh size
approaches zero:∫∫∫
D

f (x , y , z) dx dy dz = lim
max(∆Vijk )→0

∑
i ,j ,k

f (ξijk , ηijk , ζijk) ∆Vijk ,

where (ξijk , ηijk , ζijk) ∈ Vijk , and ∆Vijk = vol(Vijk).
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Theorem about existence of triple integrals

(Existence of Triple Integral) Let D be a bounded and
measurable domain in R3, and let f : D → R be a function. If
f is continuous on D, then the triple integral∫∫∫
D

f (x , y , z) dx dy dz exists.
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A proof of the existence theorem

Proof: We will prove the existence of the triple Riemannian
integral by showing that it can be approximated by a sequence
of triple Riemann sums.
Let P = {(x0, y0, z0), (x1, y1, z1), . . . , (xn, yn, zn)} be a partition
of D into n subdomains, such that each subdomain is a
rectangular box. Let ∆xi = xi − xi−1, ∆yj = yj − yj−1, and
∆zk = zk − zk−1 be the lengths of the sides of the boxes.
Then the volume of each subdomain is ∆Vijk = ∆xi∆yj∆zk .
Let (x∗ijk , y

∗
ijk , z

∗
ijk) be a point in the ijk-th subdomain. Then the

triple Riemann sum for f (x , y , z) over the partition P is:

S(P , f ) =
n∑

i=1

n∑
j=1

n∑
k=1

f (x∗ijk , y
∗
ijk , z

∗
ijk)∆Vijk
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A proof of the existence theorem

By the continuity of f , we can choose the points (x∗ijk , y
∗
ijk , z

∗
ijk)

in such a way that the difference between S(P , f ) and the
triple Riemannian integral is arbitrarily small:∣∣∣∣∫∫∫

D

f (x , y , z)dV − S(P , f )

∣∣∣∣ < ε

for any ε > 0.
Therefore, by the definition of the limit, the triple Riemannian
integral

∫∫∫
D
f (x , y , z)dV exists, and is equal to the limit of

the sequence of triple Riemann sums as the size of the
partition approaches zero.
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Example of a triple integral

∫∫∫
z > 0, y > 0, x > 0,
x + 2y + 3z − 6 = 0

(x + y + z)dxdydz =

∫ 2

0

∫ 3−3z/2

0

∫ 6−2y−3z

0
(x + y + z)dxdydz =

∫ 2

0

∫ 3−3z/2

0

(
3z2

2
+ yz − 12z − 6y + 18

)
dydz

∫ 2

0

(
−9z3

8
+

45z2

4
− 63z

2
+ 27

)
dz =

33

2
.
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From Cartesian to polar coordinate system

Consider
an elementary plate of the area
on the plane in a polar coordinates.

ds = r dr dφ.

Consider an integral over an area
with rectifiable border:∫∫

D
dxdy =

∫∫
D
ds =

∫∫
D
rdrdφ
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Example of integration in polar coordinates

∫ 2

0

∫ x

0

ydydx =∫ π/4

0

∫ 2/cos(φ)

0

r 2 sin(φ)drdφ =∫ π/4

0

8 sin (φ)

3cos (φ)3dφ =
4

3
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Changing of variables in two dimensional integrals
Let’s
consider a smooth
surface S defined
by a parametrization
~x = ~x(u, v),
where (u, v)
are parameters in some
domain D ⊂ R2. The

elementary area of S at a point ~x(u0, v0) is given by:

dS = ‖∂
~x

∂u
× ∂~x

∂v
‖du dv

where ‖ · ‖ denotes the Euclidean norm, and ∂~x
∂u
, ∂~x
∂v

are the
partial derivatives of ~x with respect to u and v , respectively.
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Changing of variables in two dimensional integrals

Now, suppose we have a change of variables
(u, v) = (u(r , s), v(r , s)). Let ~y = ~x(u(r , s), v(r , s)) be a new
parametrization of the surface S in terms of the new variables
(r , s). Then the partial derivatives of ~y with respect to r and s
are given by the chain rule:

∂~y

∂r
=
∂~x

∂u

∂u

∂r
+
∂~x

∂v

∂v

∂r

and
∂~y

∂s
=
∂~x

∂u

∂u

∂s
+
∂~x

∂v

∂v

∂s
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Changing of variables in two dimensional integrals

Taking the cross product of these vectors, we have:

∂~y

∂r
× ∂~y

∂s
=
(∂u
∂r

∂v

∂s
− ∂u

∂s

∂v

∂r

)∂~x
∂u
× ∂~x

∂v

where we have used the fact that ∂x
∂u
× ∂x

∂v
is a constant vector

on the surface S .
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Changing of variables in two dimensional integrals

Therefore, the new elementary area dS ′ in terms of the
variables (r , s) is given by:

dS ′ = ‖∂
~y

∂r
× ∂~y

∂s
‖dr ds =

∣∣∣∂u
∂r

∂v

∂s
− ∂u

∂s

∂v

∂r

∣∣∣dS
where we have used the fact that the cross product of two
vectors has the same Euclidean norm as their determinant.
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Changing of variables in two dimensional integrals

Therefore, the elementary area changes by a factor of∣∣∣∂u∂r ∂v∂s − ∂u
∂s

∂v
∂r

∣∣∣ when changing variables from (u, v) to (r , s).
This is known as the Jacobian determinant of the change of
variables, and it appears in many areas of mathematics,
including multivariable calculus and differential geometry.
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Triple integrals

Changing Cartesian to polar coordinate from
general point of view

The integral in Cartesian coordinates is given by:∫ x2

x1

∫ y2

y1

f (x , y) dx dy

We’ll change the variables to polar coordinates, where
x = r cos(θ) and y = r sin(θ). When we make this
transformation, the differential area element in polar
coordinates, ds, is given by:

ds = r dr dθ
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Changing Cartesian to polar coordinate from
general point of view

The Jacobian for the polar coordinates:

J =

∣∣∣∣∂x∂r ∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣cos(θ) −r sin(θ)
sin(θ) r cos(θ)

∣∣∣∣ = r cos2(θ) + r sin2(θ) = r

In this case:∫ r2

r1

∫ θ2

θ1

f (r cos(θ), r sin(θ)) · r︸︷︷︸
Jacobian

dr dθ
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Changing of variables in triple integrals

Consider a function f (x , y , z) defined on a region D in
three-dimensional space, and express the integral of f over D
in terms of a new set of coordinates (u, v ,w), where
x = x(u, v ,w), y = y(u, v ,w), and z = z(u, v ,w). Then the
triple integral can be written as: ∫∫∫

D

f (x , y , z)dV =∫∫∫
D′
f (x(u, v ,w), y(u, v ,w), z(u, v ,w))|J(u, v ,w)|dudvdw ,

where D ′ is the region in the u, v ,w coordinate system that
corresponds to the region D in the x , y , z coordinate system,
and J(u, v ,w) is the Jacobian determinant of the
transformation.

Triple integrals Changing variables



Triple integrals

Changing of variables in triple integrals

Consider a function f (x , y , z) defined on a region D in
three-dimensional space, and express the integral of f over D
in terms of a new set of coordinates (u, v ,w), where
x = x(u, v ,w), y = y(u, v ,w), and z = z(u, v ,w). Then the
triple integral can be written as: ∫∫∫

D

f (x , y , z)dV =∫∫∫
D′
f (x(u, v ,w), y(u, v ,w), z(u, v ,w))|J(u, v ,w)|dudvdw ,

where D ′ is the region in the u, v ,w coordinate system that
corresponds to the region D in the x , y , z coordinate system,
and J(u, v ,w) is the Jacobian determinant of the
transformation.

Triple integrals Changing variables



Triple integrals

Changing of variables in triple integrals

Consider a function f (x , y , z) defined on a region D in
three-dimensional space, and express the integral of f over D
in terms of a new set of coordinates (u, v ,w), where
x = x(u, v ,w), y = y(u, v ,w), and z = z(u, v ,w). Then the
triple integral can be written as: ∫∫∫

D

f (x , y , z)dV =∫∫∫
D′
f (x(u, v ,w), y(u, v ,w), z(u, v ,w))|J(u, v ,w)|dudvdw ,

where D ′ is the region in the u, v ,w coordinate system that
corresponds to the region D in the x , y , z coordinate system,
and J(u, v ,w) is the Jacobian determinant of the
transformation.

Triple integrals Changing variables



Triple integrals

Changing of variables in triple integrals

The Jacobian is given by:

J(u, v ,w) ≡
∣∣∣∣ ∂(x , y , z)

∂(u, v ,w)

∣∣∣∣ =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
The Jacobian measures the change
in volume due to the change of variables.

dV =

∣∣∣∣ ∂(x , y , z)

∂(u, v ,w)

∣∣∣∣ du dv dw .
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Triple integrals

Example of changing to the spherical coordinates

Let a
function f (x , y , z) be defined in Cartesian
coordinates (x , y , z). Change to spherical
coordinates (r , θ, φ), where r is the radial
distance from the origin, θ is the polar
angle measured from the positive z-axis,
and φ is the azimuthal angle measured
from the positive x-axis in the xy -plane.
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Example of changing to the spherical coordinates
The transformation
from Cartesian coordinates
to spherical coordinates is given by:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

where
0 ≤ r ≤ R , 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π.

∂(x , y , z)

∂(r , θ, φ)
=

∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

∣∣∣∣∣∣ = r 2 sin θ.
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Example of changing to the spherical coordinates

Therefore, the integral of f over the sphere of radius R
centered at the origin in spherical coordinates is given by:

∫ 2π

0

∫ π

0

∫ R

0

f (r sin θ cosφ, r sin θ sinφ, r cos θ) r 2 sin θ dr dθ dφ

where 0 ≤ r ≤ R , 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π. This integral
represents the same volume as the integral of f over the sphere
of radius R centered at the origin in Cartesian coordinates, but
it can be easier to evaluate in certain cases due to the
simplification of the integral limits and the Jacobian factor.
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Spherical coordinates

∫∫∫
x2+y2+z2<4

√
x2 + y 2 + z2dx dy dz .

∫∫∫
x2+y2+z2<16

√
x2 + y 2 + z2dx dy dz =∫ 2π

0

∫ π/2

−π/2

∫ 4

0

r 3 cos(ψ)dr dψ dφ =

∫ 2π

0

∫ π/2

−π/2

64 cos(ψ) dψ dφ =∫ 2π

0

128dψ = 256π.
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