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Multiple integrals

External integral sum

Consider an area D on the
plane. Divide the area on
a mesh with steps ∆x and
∆y . rectangle element of
the plane ∆s = ∆x∆y .
Cover the D by the
rectangles ∆s = ∆x∆y
the and define
the sum of the rectangles,
which cover the D:

S =
∑
N

∆s.

Here N is the number of the elements ∆s which covered the
area D.
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Multiple integrals

Internal integral sum

Define σ as a sum of
the rectangles ∆s which
are internal of the D:

σ =
∑
M

∆s.

Here M is number
of the internal rectangles
for the D, M ≤ N Then
the area of the figure D:∑

M

∆s ≤ mesD ≤
∑
N

∆s.
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An area of the border

Define a difference
between sum external and internal
rectangles as a area of the border:

mes(∂D) ≤ (N −M)∆s.

Theorem. A measure of a rectifiable
curve is equal to zero.
Proof. Let the length of the curve L be equal to l . Divide the
curve over n segments with the same length. Then any
segment of the curve can be covered by a circle of diameter
l/N . The measure of all such circles are

mes(L) ≤ lim
N→∞

N∑
i=1

(
l

N

)2

π ≤ lim
N→∞

l2

N
= 0.
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Theorem about a measure of the set

If a border ∂D of a certain area D is rectifiable curve, then the
area is measurable.
Proof. Define a rectangle ∆s = ∆x∆y and the set of the
rectangles with the area ∆s si ⊂ D and mes(∩si) = 0.

σM =
∑
M

∆s.

Define a mesh which covers the set D:

{si}, si ∩ D 6= 0, sN =
∑
N

∆s, σM ≤ sN , M < N .

The limit as max{∆x ,∆y} → 0, then M ,N →∞ and

mes(∂D) = 0,⇒ sN − σM → 0, ⇒
σM ≤ mes(D) ≤ sN ⇒ mes(D) = lim

∆s→0
σM = lim

∆s→0
sN .
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Counter example. The area of the Koch snowflake

Find the area of the Koch snowflake if the initial length of the
side of the triangle was 1.

Figure: Koch snowflake. The
picture from Wikipedia

The perimeter
of the Koch snowflake:
Number of sides Nn = 3 · 4n,
the length of the side
ln = 3−n, perimeter is equal

P = Nn · L = 3

(
4

3

)n

,
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The area of the Koch’s snowflake

The length of each interval on the n-th step ln = 1/3n,
numbers of net triangles Nn = 3 · 4n−1 and every step add the
triangle with area sn = sn−1/9. The area of the initial triangle
s0 =

√
3/4. Therefore

Sn = s0

(
1 +

∞∑
n=1

3 · 4n−1 · s0

9n

)
= s0

(
1 +

3

4

∞∑
n=1

(
4

9

)n
)

=

= s0

(
1 +

3

4

(
∞∑
n=0

(
4

9

)n

− 1

))
= s0

(
1 +

3

4

(
1

1− 4
9

− 1

))
=

= s0

(
1 +

3

4

(
9

5
− 1

))
= s0

8

5
.

=
2
√

3

5
.

Measure on the plane Rimannian integral Repetitive integrals



Multiple integrals

The Rimannian integral

Let the set D has a rectifiable border ∂D and a continuous
function f (x , y) is defined over all D. Any sum

I = lim
max(∆x ,∆y)→0

N∑
n=1

f (xi , yi)∆si

is called Rimanian integral of the function f (x , y) over the set
D.
The integral is written as follows:

I =

∫
D
f (x , y)ds ≡

∫ ∫
D
f (x , y)dxdy .
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Theorem about existence of the double integral

If the set D has a rectifiable border ∂D and a continuous
function f (x , y) is defined over all D then the Rimannian
integral exists.
Sketch of a proof. Let’s consider a mesh of measurable
parts δsi of the set D and define the upper limit Fi of f (x , y)
on ∆si and lower limit of f (x , y) on the ∆si .
The Rimannian integral then one obtains an inequalities:

N∑
i=1

fi∆si ≤
N∑

n=1

f (xi , yi)∆si ≤
N∑
i=1

Fi∆si .

Define diam(si) = sup{A,B}∈si (dist(A,B)).
When diam(∆si)→ 0 the difference Fi − fi → 0 due to
continuity f (x , y). Hence the Rimanian integra exists and the
value of the does not depends of the point (xi , yi) ∈ si .
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Geometrical sense of the double integral

The double
integral of function f (x , y)
might be considered as
a volume between the area
D and the surface f (x , y).
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Multiple integrals

Geometrical sense of the double integral

Let’s consider
an elementary area on a surface
z = f (x , y). Suppose a projection
of the dσ on the plane xOy is the
area ds. The normal of the surface
at the point (x , y , z) is follows:

~∇ =

(
− ∂z

∂x
,−∂z

∂y
, 1

)
,

then unit normal vector:

~n =
1√

1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

(
−∂z
∂x
,−∂z

∂y
, 1

)
.

Measure on the plane Rimannian integral Repetitive integrals



Multiple integrals

Geometrical sense of the double integral

The projection of dσ
and dS connected by a formula:

dσ · cos(γ) = dS ⇒ dσ =
dS

cos(γ)
,

define ~e3 = (0, 0, 1), then

cos(γ) = (~n, ~e3) =
1√

1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2
.

σ =

∫∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

ds.
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Properties of the double integral

The sum of double integrals

Consider continuous function f (x , y) on D. Let mes(∂D),
D = D1 ∪ D2, D1 ∩ D2 = 0 and mes(∂D1,2) = 0, then∫

D
f (x , y)ds =

∫
D1

f (x , y)ds +

∫
D2

f (x , y)ds.

Sketch of proof. One can proof this property if one considers
the integrals by definition and uses the properties of the
borders.
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Properties of the double integral

Estimation of the double integral

Let S = mes(D) f (x , y) is continuous function and
f = min(x ,y)∈D f (x , y), F = max(x ,y)∈D f (x , y), then

S f ≤
∫
D
f (x , y)ds ≤ S F
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Theorem about an average value

Let S = mes(D), f (x , y) is continuous function and
f = min(x ,y)∈D f (x , y), F = max(x ,y)∈D f (x , y), then exists
(xm, ym) such that:∫

D
f (x , y)ds = Sf (xm, ym).

Proof.

S f ≤
∫
D
f (x , y)ds ≤ S F ⇒ f ≤ 1

S

∫
D
f (x , y)ds ≤ F ,

then due to continuity ∃f (xm, ym) ≥ f and f (xm, ym) ≤ F :

f (xm, ym) =
1

S

∫
D
f (x , y)ds.
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Applications of the double integral

Given a region D in the xy -plane, we can find its area S by
integrating over the region:

S =

∫∫
D

1ds

Double integrals define the volume of a three-dimensional
region S . Divide S into thin slices parallel to the xy -plane, and
integrate the area of each slice over the height of the region:

V =

∫∫
D
f (x , y)ds

where f (x , y) gives the height of the region at each point
(x , y).
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Convolution integral as a filter

Suppose we have two functions
f (x , y) ∈ {0, 1} and g(x , y) ∈ {0, 1}.
The g(x , y) is defined in a frame
D = [a, b]× [c , d ] and another one is
define in the smaller frame [α, β]× [γ, δ].
The
problem is to find a position (x1, y1) into
the bigger frame [a, b]× [c , d ] such that∫∫

D1

f (u, v)g(x − u, y − v)dudv = mes(D1).

Solution of this problem give the convolution:

h(x , y) =

∫∫
D
f (u, v)g(x − u, y − v) du dv

.
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Fubini’s theorem

Let f (x , y) be a continuous
function defined on region D:
D = [a, b]× [g1(x), g2(x)]
or, the same,
D = [h1(y), h2(y)]× [c , d ]
where
g12(x) and h12(y) continuous
functions in the xy -plane.
Then the double integral
of f over D can be expressed
as an iterated integral:∫∫

D
f (x , y)ds =

∫ b

a

∫ g2(x)

g1(x)

f (x , y)dydx =

∫ d

c

∫ h2(y)

h1(y)

f (x , y)dxdy
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Proof the Fubini’s theorem

Consider the definition of a double
integral. Let P = {(xi , yj)} be a partition
of D, where a = x0 < x1 < · · · < xn = b
and c = y0 < y1 < · · · < ym = d .
Let ∆xi = xi − xi−1

and ∆yj = yj − yj−1 be the widths
and heights of the rectangles of D. Then
the double Riemann sum of f over P is:

S(P, f ) =
n∑

i=1

m∑
j=1

f (xi , yj)∆xi∆yj

We want to show that the limit of S(P, f ) as the mesh size of P goes to

zero is equal to the double integral of f over D.
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Proof the Fubini’s theorem

Due to continuity of f on
D one can apply the Mean
Value Theorem for integrals.
First, let’s
look at the iterated integral∫ b

a

∫ g2(x)

g1(x)
f (x , y)dydx .

Let’s integrate f (x , y)
with respect to y first,
and then – with respect to x .
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Proof the Fubini’s theorem

Fix x in the interval [xi−1, xi ]. Then the Mean Value Theorem
for integrals tells us that there exists a number yi in the
interval [yj−1, yj ] such that:

∫ yj

yj−1

f (x , y)dy = f (x , yi)∆yj .

Summing over all j , one gets:

∫ g2(y)

g1(x)

f (x , y)dy =

m(x)∑
j=1

f (x , yj)∆yj
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Proof the Fubini’s theorem

Substituting this
into the iterated integral, one gets:

∫ b

a

∫ g2(x)

g1(x)

f (x , y)dydx =

n∑
i=1

mi∑
j=1

f (xi , yj)∆xi∆yj

Notice that this is exactly the double Riemann sum of f over
P , except that we have divided by the width of the y -interval.

Measure on the plane Rimannian integral Repetitive integrals



Multiple integrals

Proof the Fubini’s theorem

Taking the limit as the mesh size of P goes to zero, we get:

∫ b

a

∫ g2(x)

g1(x)

f (x , y)dydx =

∫∫
D
f (x , y)ds

Similarly, we can show that∫ d

c

∫ h2(y)

h1(y)
f (x , y)dxdy =

∫∫
D f (x , y)ds by integrating f (x , y)

with respect to x first and then with respect to y .
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Repetitive integrals. Example

Consider the double integral:∫∫
D

(x + y) ds

where D is the region in the xy -plane bounded by the lines
y = x , y = 2, and x = 0. Consider the triangle with vertices
(0, 0), (0, 2), and (2, 2), then, we can compute the integral as
follows:∫∫
D

(x + y) ds =

∫ 2

0

∫ 2

x

(x + y) dy dx =

∫ 2

0

(
xy +

y 2

2

) ∣∣∣∣y=2

y=x

dx

=

∫ 2

0

(
2x + 2− 3

2
x2

)
dx =

(
x2 + 2x − 1

2
x3

) ∣∣∣∣x=2

x=0

= 4.
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Repetitive integrals. Example

Consider the double integral:∫∫
D

(xy) ds

where D is bounded by y = x3 and y =
√
x .∫∫

D
xyds =

∫ 1

0

∫ √x
x3 xydydx =

∫ 1

0
(x y2

2
)

∣∣∣∣y=
√
x

y=x3

dx =

∫ 1

0
( x2

2
− x7

2
) = ( x3

6
− x8

16
)

∣∣∣∣x=1

x=0

= 1
6
− 1

16
= 5

48
.
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