Differentiable manifolds

0O.M. Kiselev

o0.kiselev@innopolis.ru

Innopolis university

March 10, 2023



http://smartmechanica.ddns.net/OK
http://innopolis.university

Least squares approximation

A gradient-wise descent

The fastest gradient-wise descent

Differentiable manifolds




Least squares approximation

Let us consider the problem to find the best approximation for
the set of points {(x;, y;)}"_; by the straight line y = a;x + a,
the problem to find optimal values of (a1, a,).

Define the sum of squared residuals:

S5(k,b) = Z(}’i — a1x; — a)°.
i=1
The minimum of the function with respect to parameters k, b
defines the best approximation. The conditions are:
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Least squares approximation. Example

Consider

the set of points (1,2),(2,1),(3,3).
’ Define the sum of squared residuals:
2
! 5(81,82):(al+32—2)2+

(231 + ap — 1)2 + (331 +a — 3)2

oS oS
—— = 28a; +12a, —26 =0, -— =12a; +6a, —12=0.
8a1 832

2831 + 1232 = 26/ 1231 + 632 =12.

1
31:1/2, 32:1:>_)/:§X+1.
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Image correction

Figure: Image distortions: barrel and pincushion

The task is to find maps X = X(x,y), Y = Y(x,y) which
minimize the sum of residuals:
N M

5=, (X Cxis yig) = 1)+ (Y (xio yi) — )* = min. (1)
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Linear image correction

Here we use the linear mapping to correct the image

X(x,y) = ax + by + c,
Y(x,y) = ux+ vy + w.

Problem is find coefficients a, b, ¢, u, v, w to minimize the sum
of squared residuals.

Least squares approximation
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Linear image correction

The necessary conditions for the coefficients:

2aZxU+2bZXUyU+2CZXU 22%70
ZaZnyU+2beU+2CZyU 2Z/y,jf0
2aZx,-j+2be,-j+2cl\/lN—/\/l(N— 1)N =0,
2UZX +2VZXUyU+2WZXUf2ZJXU70
ZUZXUy,J—i—QvaU+2WZyU—QZJyUfO

2uZx,—,—+2va,-J-+2WMN—NM(M_ 1) =o0.

ij i
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Linear image correction

Let change the variables:

ZXU, X2 Zix,-j, ZJXU, Xo ZX,J
ZXU)/W Y3*Zyu, Y2*Z’_yljv Yl*ijU
Zyu

Here the letters with tildes are the sums of known expressions
of x;; and yj;.

Least squares approxl mation
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Linear image correction

Then we can rewrte the equations for a, b, ¢

2aX; +2bZ +2cX — 2X, = 0,
2aZ +2bYs +2cY —2KY, = 0,
2aX +2bY +2cMN — MN(N —1) =0

and for u, v, w.

2uXs +2vZ +2wX — 2X; = 0,
2uZ +2vYs +2wY —2Y; =0,
2uX +2vY + 2wMN — NM(M — 1) = 0.

These solutions define the linear maps X(x, y) and Y(x,y).

Least squares approximation




Linear image correction S ~ 8.5 — § = 4.23
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Figure: Linear correction of barrel distorsion.
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Cubic image correction

Consider a cubic map:

X(x,y) = a0 + aix + axy + boox® + buixy + booy® +
c30x® + X’y + cxy® + cosy’,

Y(x,y) = to + thx + toy + vaox” + vixy + vaoy” +
W30X3 + W21x2y + W12xy2 + W03y3.

The necessary conditions are

0S 0S
=0, /=012 = =0.1,2;
92 0, i=012 i 0, i=0,12;
0S 0S
_ S iii_o _ S i
Ob; 0 0>i4,j, i+ : v; 0 0>4,j, i+ ,
0S 0S
—0 0>/ itj=3 —0 030, i+j—3
(7C,'j > 1), 1+ abij =1, I+
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Cubic image correction S ~ 85 — S ~ 0.08
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Figure: Cubic correction of barrel distorsion.

The cubic map leads to the sum of residuals from S ~ 8.5 to
S ~ 0.08 which better wthat the linear correction: S = 4.23
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A gradient-wise descent

Seeking of a local minima looks like a descent to the lowest
point in a neighborhood. The best direction to the descent
opposites to the gradient.

Example
Define the gradient of the function

f(x) = X12 — 3x3x + xg,

in the point (1,2).
The partial derivatives are:

of of
(97)(1 = 2X]_ — 3X27 87)(2 = —3X]_ + 4X3

Va2 = (—4,29).

A gradient-wise descent
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Typical steps of the gradient descent

Consider an algorithm of the gradient descent. Let A be a
length of the step in opposite of the gradient.

» Let a current point xq,..., X,.
» Calculate the gradient F at the current point.
» A step in direction opposite to the gradient

X = X — Agrad(F).
> Check F(X) < F(X).
» If the condition fulfills then new position x = X.

» Another case a local minimum in the distance less than A.

A gradient-wise descent
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Calculation of the partial derivatives using the
Lagrange theorem

f(b) —f(a)
— L = f
a— b (C)7 c e (a7 b)7
B{b,f(b))

Clc,f(c)) &7 OF  F(xi+06)— F(xi —9)
8x,- 20 .
4 is small.

Aa. £(2))




The fastest gradient-wise descent

Change the gradient descent method for the opposite gradient
direction as function of the variable A:

®(A) = F(X— VF(X)-A), {x,...,xn} = const.

So we seek the minimum of the one dimension function ®(A)
on the given direction.

1. Define an interval A € [0, b] such that ®(A) < &(0).

2. Find a minimum ®(A*) on A € [0, b] using for example a
bisection method.

3. The point X = X — VF(X) - A* is considered as next
position for the next step.

4. 1f ||X — X|| > 0, then this process repeats.

The fastest descent
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An example

Consider the fastest gradient
descent for the function

A\

L

T~

f(xi, %) = (a+x)’+3(xa—x).

/(6 The level curves are ellipses
= with big semi axis along
the straight line x; = x,
and the minimum is (0, 0).

\ 1\

The fastest descent
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An example

Let the initial point is (2, 3) then f(2,3) = 28. Find the
derivatives and the gradient:

= 8x; — 4xy, — = —4x; + 8%y, VFl(nz = (4,16):
O X1 X2, % X1 + 0Xx2, l(23) = (4,16)
Then the descent direction starting the point (2,3) :

x; =2—4t, x, =3 —16t, t > 0. The minimized
one-dimensional function is:

272 \? 75
f =832t — 272t +28 =832 (t — ——— —.
(x1(t), x2(t)) = 832t 72t + 28 = 83 (t 2-832) + 3
t 212 0.16346 2 — 4t 2—4.0.16346 ~ 1.35
1 2 ] 832 ) 1 1 )
75

Xp =3 —16t; ~3—16-0.16346 ~ 0.38, f = N 5.77.

The fastest descent
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An example
The track of
) minimizing for the function
e X f=(x+x)?+30a—x)?
\/\ A\ is shown of the picture.
T ) /'] Al
A7 turning points lie on tangent
[ line for the level curves.
il ( \
NER.
N L~
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A global minimum

A global and local minima

Figure: The example of the surface with two minima which are a
global and local ones. If one starts the gradient descent near the
local minimum, then one does not reach the global minimum.

The fastest descent



Primary concepts for definition of a differentiable
manifold

P a1x; + axxo + ¢ =0, is a one function of one variable:
X1(X2) = —all(agXQ + C) or XQ(Xl) = —;12(31X1 + C). Both
forms are appropriated if a; » # 0.

» a1x; + axXxo + azxz + ¢ = 0 is a a function of two

variables: x, = —i Dtk 3nXn + c).
» The following two equals define one dimensional function.

aiX; + axXo + asxs + ¢ = O, lel + b2X2 + b3X3 +d=0.
» In a general case the m equalities of N variables define

N — m dimensional implicit function:

fk(Xl,...,XN):O,k:].,...,m.

Differentiable manifolds




Primary concepts for definition of differentiable
manifolds

> Does the formula 37_, x? — R? = 0 define a
two-dimensional function?

3

3
xi=+,|R>— Z x2, xi=—,|R?— Z x2.

k=1,k#i k=1,k#i

The answer looks like NO! because one obtains two
different values for x; for the same set of coordinates

{Xk}i;ék-




Primary concepts for definition of differentiable
manifolds

» Another point of view for the spherical coordinates:
x1 = Rsin(0) cos(¢), xo = Rsin(0)sin(¢), x3 = Rcos(f).

So we can see that in the spherical coordinate system one
obtain one-to-one map [0, 7] x [0,27) — a set of
X1, X2, X3.

We need a generalization for the function definition.
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An example

Consider
X*+y*+22-1=0,

A normal vector N at a point A = (xo, Yo, Z0) looks like

I\_i = (2X0, 2_)/0./ 220).

The tangent plain at the point A is

follows:2x0(x — x0) + 2y0(y — Yo) + 220(z — 20) = 0.
Without loss of a generality let’'s assume xq # 0. Define é;:

Xo¥0, X§ + 25, }/020),

= (-
7, 5) = ZoXoYo — XoYoZo = 0.




An example

New coordinates (&, 7, ():

2Xp 2o 229 X — Xo &
— 20 0 Xo Y=Y | =1\ n
—Xo¥o X5+ 25 —YoZo z—2 ¢

A determinant of the matrix yg — 1.
The inverse transform:

20 X0Y0
X0 ve—1 y2-1 f X = Xo
Yo O 1 nl=1y—X
g 72, B% ¢ zZ—2
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An example

For any point A of the implicit function
X+ +22-1=0

one can define a new coordinate system and rewrite the
implicit function in the explicit one in new coordinates.
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Theorem about explicit form of the function

Let's consider
fu(xt, ..., x,) =0,k e{l,... M}, ne{l,... N},
where all f, are continuously differentiable functions at the

origin.
If a rank of the matrix

o (0% o,
\0x, /)’ Skn = X,

is equal M at the origin then exists a neighborhood ofthe
origin, where the implicit function can be rewritten in an
explicit form as a function of N — M independent variables.




Sketch of proof

Let's change the variables:
&k =f(x,....xn), k€ {1,..., M}, Consider the matrix

M x M
= (afk>, Rank($) =

Then Je >, x, = Qﬁk(g,XMJrl, . N), VE HgH <€
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Sketch of proof

Then one can rewrite

Z agnfk +o(lll)-

Hence one can rewrite:

Xk:Fk(XM+1,...7XN),k€{1,2,...,/\/]}.
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A definition of differentiable manifold

The set in N dimensional space is called N — M dimensional
differentiable manifold if for any point A of the set exists
neighborhood of the A such that de > 0 and the manifold can
be defined by

Xk = Fi(x1, ..., xnem) =0, ke {M,... N}, Vx:||x|| <e.

The set of maps covered all range of the variables is called an
atlas.
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Definition for a Jacobian

Let’s consider the changing of variables:

Yk = fi(x).
the matrix
of of
oxy OXn
Ot oty
oxy OXn

is called Jacobian.

Differentiable manifolds




4, 2
Y1 =X +X{ X2+ X3,Y2 = Xp, Y3 = X3.

Ax3 + 2x1x0 X2 1
8(}/1-/)/27)/3) _ 1 0 172 ]iL O

(9(X17X2,X3) 0 0 1
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Summary
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A gradient-wise descent

The fastest gradient-wise descent
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