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Gradient and optimization problems

Invariant form of the differential

Consider the changing of coordinates for x , y :

x = x(u, v), y = y(u, v),

Below we suppose that the functions x(u, v) and y(u, v) are
differentiable.

df =
∂f

∂x
dx +

∂f

∂y
dy =

=
∂f

∂x

(
∂x

∂u
du +

∂x

∂v
dv

)
+
∂f

∂y

(
∂y

∂u
du +

∂y

∂v
dv

)
=

=

(
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

)
du +

(
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

)
dv

=
∂f

∂u
du +

∂f

∂v
dv .
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Differential for the N-dimensional function

The changing of the variables in general form looks like:

X = X (U), X (U) = (x1(u1, . . . , un), . . . , xN(u1, . . . , uN)).

In this case the differential has the same form:

df =
N∑

k=1

∂f

∂xk
dxk =

N∑
k=1

∂f

∂uk
duk .

As well as the differential is the primary (linear) part of the
function changing then the vector

~S =

(
∂f

∂x1
, . . . ,

∂f

ptxN

)
defines the direction of the grows of the function for the given
point X .
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Gradient of the function

The vector ~v =
(

∂f
∂x
, ∂f
∂y

)
is called gradient of the function

f (x , y) at the point (x , y). The gradient can be written by
following equivalent definitions:

~grad(f ) ≡
(
∂f

∂x
,
∂f

∂y

)
;

~∇f =

(
∂f

∂x
,
∂f

∂y

)
.

Define the differential of the independent variables as
~dX = (dx1, dx2, . . . , dxN). The differential of the function can

be written as scalar product:

(~∇f , ~dX ) =
N∑

k=1

∂f

∂xk
dxk .
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Example. Gradient of the function

x

y
f (x , y) =

x2

4
+ y 2,

~∇f =
(x

2
, 2y
)
,

~∇f |(2,0) = (1, 0),

~∇f |(0,1) = (0, 2),

~∇f |(1,√3/2) = (0.5,
√

3).
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Gradient and optimization problems

Derivative at given direction

Directional derivatives one can obtain by the following track:

1. Define direction ~s = (sx , sy ) with the unit length: |~s| = 1.

2. Specify the certain point A = (x0, y0).

3. Define the dependence of the coordinates
x = x0 + sxt, y = y0 + sy t.

4. Substitute the dependence into the function
f (x , y) = f (x0 + sxt, y0 + sy t).

5. Find full derivative on t:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
=

(
∂f

∂x
sx +

∂f

∂y
sy

)∣∣∣∣
(x ,y)=(x0,y0)

.
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Geometry of surfaces

Let f (x , y) be a definition for some surface in 3-dimensional
space:z = f (x , y).

I fx = ∂f
∂x

define the inclination along the direction of the x
axis.

I fy = ∂f
∂y

define the inclination along the direction of the y
axis.

I The vector ~Φ = (fx , fy ) defines a projection on the plane
(x , y) of the surface inclination at the current point
(x , y).
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Geometrical sense of the partial derivatives

Let us consider surface z = f (x , y).
Consider a dissection of the surface
by the plain y = y0, y0 = const.
The intersection of the
surface and plain defines the curve
one-dimensional curve z = f (x , y0)
and the angle of the tangent line
for the curve at the point x0 is ∂f

∂x

The same for the curve
z = f (x0, y) one gets the angle of the tangent line for the
curve z = f (x0, y) is ∂f

∂y
.
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A normal vector

Rewrite the equation for the surface in the form:

z − f (x , y) = 0.

The differential on the surface should be following:

dz − ∂f

∂x
dx − ∂f

∂y
dy = 0.

This equality should be fulfill for any curve on this surface
(x(t), y(t), z(t)), then these equality is the scalar product for

the vector ~N =
(

∂f
∂x
, ∂f
∂y
,−1

)
and the vector of differential for

any curve on the surface. As well as the differential defines the
tangent lines for the surface, then ~N is a normal vector for the
surface at the point (x0, y0, f (x0, y0)).
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Equation for the tangent plain

From the course of analytic geometry the plain is defined by
the normal vector ~N and a point. It yields:

∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0)− (z − z0) = 0.

This formula defines the tangent plain for given surface
z = f (x , y) at the point (x0, y0, f (x0, y0)).
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Tangent plain for implicit case

The function F (x , y , z) = 0 defines two dimension manifold in general
case.

dF ≡ ∂F

∂x
dx +

∂F

∂y
dy +

∂F

∂z
dz .

For any curve on this surface (x(t), y(t, z(t)):

∂F

∂x
dx +

∂F

∂y
dy +

∂F

∂z
dz = 0.

The ~V = (x ′, y ′, z ′) define the differential of the curve, then
~N =

(
∂F
∂x ,

∂F
∂y ,

∂F
∂z

)
is a normal vector for the surface.

The tangent plain at the point (x0, y0, z0) has the form:

∂F

∂x
(x0, y0, z0)(x − x0) +

∂F

∂y
(x0, y0, z0)(y − y0) +

∂F

∂z
(x0, y0, z0)(z − z0) = 0.

Invariant Geometry Surfaces Extreme points



Gradient and optimization problems

Definitions of local minima and maxima

A value A is a local maxima of f (X ) in the point X (A) if
∀ε > 0∃δ ∀X : ||X − X (A)|| < δ, A− f (X ) ≥ 0.
Vice versa. A value A is a local minima of f (X ) in the point
X (A) if ∀ε > 0∃δ ∀X : ||X − X (A)|| < δ, A− f (X ) ≤ 0.
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Definition of extreme point
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The point
of differentiable function f (X )
where all derivatives of first order
are zero is called extreme point.
For following functions point
A = (0, 0) is an extreme point:

f (x1, x2) = 3x21 + x22 ,

∂f

∂x1
= 6x1,

∂f

∂x1
= 2x2;

f (x1, x2) = −3x21 − x22 ,
∂f

∂x1
= −6x1,

∂f

∂x1
= −2x2;
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Saddle point
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f (x1, x2) = 3x21 − x22 ,

∂f

∂x1
= 6x1,

∂f

∂x1
= −2x2.
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Necessary conditions for the extreme points

Theorem

If f (X ) is differentiable, then ∂f
∂xk

= 0, ∀k ∈ {1, . . . ,N} at the
interior maxima or minima point.

Proof. Suppose the A = (0, 0) is maxima, and one of the
partial derivative is not zero, then in the maxima point:

f (X ) = f (0, 0) +
∂f

∂x
(0, 0)x + o(|x |+ |y |),

then for ∂f
∂x

(0, 0)x > 0 the f (x , y) > f (0, 0), which contradict
to the initial claim. For the another partial derivative one can
consider by the same way. As result one gets the claim of the
theorem.
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Theorem about mixed second derivative

Theorem

Let f (X ) be differentiable function and all derivatives of the
first and second order are continuous, then

∂2f

∂xk∂xj
=

∂2f

∂xj∂xk
.

Proof. For simplicity consider the function of two variables
X = (x1, x2) and write the function using the Taylor formula
for first and second variable by sequence:

f (x1, x2) = f (0, x2) +
∂f

∂x1
(0, x2)x1 +

1

2

∂2f

∂x21
(0, x2)x21 + o(x21 ) =
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Theorem about mixed derivative. Proof.

Define to be shorter f0 = f (0, 0), ∂f
∂xk
|(0,0) = ∂f0

∂xk
, ∂2f

∂x2k
|(0,0) =

∂2f0
∂x2k

, ∂2f0
∂xk∂xj

= ∂2f
∂xk∂xj

|(0,0).

f (x1, x2) = f0 +
∂f0
∂x2

x2 +
1

2

∂2f0
∂x21

x22 + O(x22 ) +(
∂f0
∂x1

+
∂2f0
∂x2∂x1

x2 + o(x2)

)
x1 +

1

2

(
∂2f0
∂x21

+ o(x2)

)
x21 + o(x21 ) =

f0 +
∂f0
∂x1

x1 +
∂f0
∂x2

x2 +

1

2

(
∂2f0
∂x21

x21 + 2
∂2f0
∂x2∂x1

x1x2 +
∂2f0
∂x21

x22

)
+ o(x21 + x1x2 + x22 );
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Theorem about mixed derivative. Proof.

The same formula one obtains for the case of using the Taylor
formula by opposite case and the therm of order x2x1:

f (x1, x2) ∼ f0 +
∂f0
∂x1

x1 +
∂f0
∂x2

x2 +

1

2

(
∂2f0
∂x21

x21 + 2
∂2f0
∂x1∂x2

x2x1 +
∂2f0
∂x21

x22

)
;

Due to the linear independence of the terms of order x1x2 are
equivalent. Then

∂2f0
∂x1∂x2

=
∂2f0
∂x2∂x1
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Sufficient conditions for minima and maxima

Theorem

Let f (X ) be twice differentiable function of two variables and
the point A = (0, 0) is extreme point

I if
(

∂2f
∂x1∂x2

)2
− ∂2f

∂x21

∂2f
∂x22

< 0 and ∂2f
∂x21

< 0, then A is a

maxima;

I if
(

∂2f
∂x1∂x2

)2
− ∂2f

∂x21

∂2f
∂x22

< 0 and ∂2f
∂x21

> 0 then A is a minima;

I if
(

∂2f
∂x1∂x2

)2
− ∂2f

∂x21

∂2f
∂x22

> 0, then A is a saddle point;

I if
(

∂2f
∂x1∂x2

)2
− ∂2f

∂x21

∂2f
∂x22

= 0, then we need an additional

studies.
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A sketch of proof for the second order criteria for

maxima

in the extreme point ~∇f = 0, then the change of the function
in small neighborhood of the point is:

f (X )− f (0) =
∂2f0
∂x21

(dx)2 +

(
∂2f0

∂x1∂x2

)2

dxdy +
∂2f0
∂x22

(dy)2 +

+o((dx)2 + dxdy + (dy)2) =

=

(
∂2f0
∂x21

+

(
∂2f0

∂x1∂x2

)2
dy

dy
+

∂2f0
∂x22

(
(dy)2

(dx)2

)2
)

(dx)2 +

+o((dx)2 + dxdy + (dy)2).

In maxima point the difference should be negative. It implies:

∂2f0
∂x21

+

(
∂2f0
∂x1∂x2

)2
dy

dx
+
∂2f0
∂x22

(
(dy)2

(dx)2

)
< 0.
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A sketch of proof for the second order criteria for

maxima

Define κ = dy/dx , then

∂2f0
∂x21

+

(
∂2f0
∂x1∂x2

)2

κ +
∂2f0
∂x22

κ2 < 0.

The second-order expression is negative for any κ ∈ R when(
∂2f0
∂x1∂x2

)2

− ∂2f0
∂x21

∂2f0
∂x22

< 0.
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Optimal problems with constrains

Let add a constrain to the optimization problem. The simplest
question of this type is follows.
Find the shorter distance from the origin to a plain
ax + by + cz + d = 0.
The first step is define the function for the optimization. The
distance from the origin is follows:

f (x , y , z) = x2 + y 2 + z2.

From geometrical point of view one should construct a sphere
which touch the given plain.
Straight forward solution is follows. Define one of the variable,
say z = z(x , y) using the equation for the plain and substitute
the definition into the function f = f (x , y , z(x , y)). Then find
the extreme point for the function of two variables.
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Lagrange multipliers

Let us consider the level of f the function should touch to the
plain. Then the gradients of f and the constraint curve are
collinear:

~∇f = −λ~∇φ.

Additional condition is the constrain
φ(x , y , z) ≡ ax + by + cz + d = 0.

φ(x , y , z) = 0.

Define the Lagrange function (Lagrangian):

L(x , y , z) = f (x , y , z) + λφ(x , y , z).
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Lagrange multipliers

The necessary conditions for the extreme points:

~∇L(x , y , z , λ) = 0.

Or the same

∂f

∂x
+ λ

∂φ

∂x
= 0,

∂f

∂y
+ λ

∂φ

∂y
= 0,

∂f

∂z
+ λ

∂φ

∂z
= 0,

φ = 0
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Lagrange multipliers. Example

f (x , y , z) = 4x + 2y − z + 1→ min, (x , y , z) ∈ x2 + y 2 − 4 = 0.

L = 4x + 2y − z + 1 + λ(x2 + y 2 − 4);

∂L

∂x
= 4 + 2λx ,

∂L

∂y
= 2 + 2λy ,

∂L

∂z
= −1,

∂L

∂λ
= x2 + y 2 − 4.

A1 = (−4/
√

5,−2/
√

5,−1), A2 = (4/
√

5, 2/
√

5,−1).

The answer:A1 = (−4/
√

5,−2/
√

5,−1).
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Lagrange multipliers. General case

f = f (X ) and constraints φk(X ), k = 1, . . . ,m, then:

L = f (x) +
m∑

k=1

λkφk(X ).

The necessary condition for the extreme point:

~∇L(X ,Λ) = 0, Λ = (λ1, . . . , λm).
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