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Lecture 4. Fourier series

Periodic functions

A piecewise continuous function f (x) such that
f (x + T ) = f (x)∀x ∈ R for certain constant T > 0 is called
periodic function.
The value T > 0 is called period.
Let T is a period of f (t), then quantities T̃ = nT , ∀n ∈ Z are
periods of f (x).
The reciprocal quantity is called frequency

ω =
1

T
.
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Periodic functions

Theorem

Let T be the smallest of the periods of a piecewise continuous
function f (t), then all periods of the function are nT , ∀n ∈ Z
or the function is a constant.

Proof. Suppose the function f has two different periods.
Define the smallest one as T1 and another one as and
T2 6= nT1, ∀n ∈ N.

f (t − T1)) = f (t), f (t − T1 + T2) = f (t + (T2 − T1)) = f (t),⇒
T2 − T1 is a period,⇒ ∃N > 0 : T1 > T2 − NT1 > 0,

T = T2 − NT1, f (t + T ) = f (t).

We obtain a contradiction.
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Properties of periodic functions

Let two functions f (t) and h(t) be periodic. Their periods are
T1 and T2 correspondingly. The sum of the functions

g(t) = f (t) + h(t),

is a periodic functions of period T if ∃n,m ∈ N : T1n = T2m
and T = T1n = T2m.
Examples:

g(t) = sin(3t) + cos(5t) T1 =
2π

3
, T2 =

2π

5
,

3T1 = 5T2 = 2π, T = 2π.

y(t) = sin(3t) + cos(
√

2t) T1 =
2π

3
, T2 =

2π√
2
,
T1

T2
6∈ Q ⇒

y(t) has no period.

Periodic functions Definition of Fourier series Fourier approximation Complex form of the Fourier series



Lecture 4. Fourier series

Periodic functions of period 2π

Let f (x) be periodic with a period T .
If one changes the variable y = 2πx/(T ), then one will get
2π(x + T )/T = 2πx/T + 2π. Therefore the changing of the
variable y = 2πx/T define new 2π- periodic function:

f (y + 2π) = f (y).

Below we consider the functions with period 2π.
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Definition of Fourier series

The series

S(x) =
1

2
a0 +

∞∑
n=1

an cos(nx) + bn sin(nx).

It is easy to see at specific points the the series turn into the
following:

S(x) =
1

2
a0 +

∞∑
n=1

an, x = 2πk , k ∈ Z;

S(x) =
1

2
a0 +

∞∑
n=1

bn, x =
π

2
+ 2πk , k ∈ Z.

In this case the series are absolutely convergent uniformly on
the interval x ∈ [0, 2π) if both series contained an and bn are
absolutely convergent.
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Fourier approximation of cosine by series of sines.

Figure: Fourier approximation of the cosine by series of sine on a
half of period: cos(x) and 8

π

∑20
n=1

n
4n2−1

sin(nx).
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Integration of the Fourier series

∫ x

x0

S(t)dt =

∫ x

x0

(
1

2
a0 +

∞∑
n=1

an cos(nt) + bn sin(nt)

)
dt =

=

∫ x

x0

(
1

2
a0 +

N∑
n=1

an cos(nt) + bn sin(nt)

)
dt +

+

∫ x

x0

( ∞∑
n=N

an cos(nt) + bn sin(nt)

)
dt.

∀ε > 0, ∃N :

∣∣∣∣∣
∞∑

n=N

an cos(nt) + bn sin(nt)

∣∣∣∣∣ < ε⇒

∫ x

x0

S(t)dt =
1

2
(x − x0)a0 +

N∑
n=1

∫ x

x0

(an cos(nt) + bn sin(nt)) dt +O(ε).
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Integrating of the Fourier series

∫ x

x0

S(t)dt = (x − x0)a0 +
∞∑
n=1

(an
n

(sin(nx)− sin(nx0)) −

− bn
n

(cos(nx)− cos(nx0))

)
=

=
1

2
(x − x0)a0 +

∞∑
n=1

(
an
n

sin(nx)− bn
n

cos(nx)

)
−

∞∑
n=1

(
an
n

sin(nx0)− bn
n

cos(nx0)

)
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Theorem about integration of the Fourier series

If Fourier series absolutely convergent uniformly over the
period, then the integral of the series is equal to the Fourier
series integrated term by term.

∫ x

x0

(
1

2
a0 +

∞∑
n=1

an cos(nt) + bn sin(nt)

)
dt

=
1

2
(x − x0)a0 +

∞∑
n=1

(
an
n

sin(nx)− bn
n

cos(nx)

)
−

−
∞∑
n=1

(
an
n

sin(nx0)− bn
n

cos(nx0)

)
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Differentiating of the Fourier series

If the coefficients of the Fourier series an and bn are such that
both series

∞∑
n=1

n|an|,
∞∑
n=1

n|bn|

are convergent, then the Fourier series the derivative of the Fourier
sum is equal to differentiated term by term series.
Proof.

S(x) =

∫ x

x0

∞∑
n=1

(−nan sin(nt) + nbn cos(nt)) dt

=
∞∑
n=1

(an cos(nt) + bn sin(nx))⇒

d

dx
S(x) =

d

dx

∞∑
n=1

(−nan sin(nx) + nbn cos(nx)) .
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Fourier approximation

Let assume f (x) be a represented as a Fourier series:

f (x) =
1

2
a0 +

∞∑
n=1

an cos(nx) + bn sin(nx).

Then the coefficients of the Fourier series are:

a0 =
1

π

∫ 2π

0

f (x)dx

an =
1

π

∫ 2π

0

f (x) cos(nx)dx , n ∈ N;

bn =
1

π

∫ 2π

0

f (x) sin(nx)dx , n ∈ N.
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Formulae for the Fourier coefficients

∫ 2π

0

cos(mx) cos(nx)dx =

∫ 2π

0

(
1

2
cos

(
x(m − n)

2

)
+

+
1

2
cos

(
x(m + n)

2

))
dx =

{
π, n = m;
0, n 6= m.
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Formulae for the Fourier coefficients

∫ 2π

0

sin(mx) sin(nx)dx =

∫ 2π

0

(
1

2
cos

(
x(m − n)

2

)
−

− 1

2
cos

(
x(m + n)

2

))
dx =

{
π, n = m;
0, n 6= m.
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Formulae for the Fourier coefficients

∫ 2π

0

cos(mx) sin(nx)dx =

∫ 2π

0

(
1

2
sin

(
x(m + n)

2

)
−

− 1

2
sin

(
x(m − n)

2

))
dx = 0.
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Fourier approximation of the step-function

Figure: Fourier approximation for the curve 1
2 (1 + sign(π − x)) by

1
2 + 1

π

∑10
n=1

sin((2n−1)x)
2n−1 . The Gibbs phenomenon is the oscillatory

behavior of the piecewise differentiable periodic function around
jump discontinuity.
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Behavior of the Fourier coefficients

If a periodic function has derivatives of k-th order, then

an = O(n−k), bn = O(n−k),

an =
1

2π

∫ 2π

0

f (x) cos(nx)dx =

=
f (x)

2πn
sin(nx)|x=2π

x=0 −
1

2πn

∫ 2π

0

f ′(x) sin(nx)dx

= − f ′′(x)

2πn2
cos(nx)|x=2π

x=0 +
1

2πn2

∫ 2π

0

f ′′(x) cos(nx)dx =

= . . . .
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Example. Fourier approximation for smooth

function

f (x) = x(π − x)(2π − x),

a0 =
1

2π

∫ 2π

0

x(π − x)(2π − x)dx = 0;

an =
1

π

∫ 2π

0

x(π − x)(2π − x) cos(nx)dx =
12

n3
;

f (x) = 12
∞∑
k=0

sin(nx)

n3
.
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Example. Fourier approximation for smooth

function

Figure: f (x) = x(π − x)(2π − x) and s(x) =
∑3

n=1
sin(nx)

n3 .
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Example. Fourier approximation for smooth

function

Figure: f (x) = x(π − x)(2π − x)− S(x) =
∑10

n=1
sin(nx)

n3 .
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Euler’s formula

i =
√
−1, i2 = −1.

e ix =
∞∑
n=0

(ix)n

n!
=
∞∑
n=0

in xn

n!
,

i3 = −i , i4 = 1, i5 = i , i6 = −1, . . .

i2n = (−1)n, i2n+1 = (−1)ni ,

e ix =
∞∑
n=0

(−1)n
x2n

(2n)!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
.

e ix = cos(x) + i sin(x).

e inx = cos(nx) + i sin(nx).
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Fourier series in complex form

Using the Euler formula one can write:

cos(nx) =
e inx + e−inx

2
, sin(nx) =

e inx − e−inx

2i
.

Then the Fourier series one can rewrite:

S(x) =
1

2
a0 +

∞∑
n=1

an cos(nx) + bn sin(nx)

=
∞∑
n=1

an
e inx + e−inx

2
+ bn

e inx − e−inx

2i
=

=
∞∑
n=1

(
an
2

+
bn
2i

)
e inx +

(
an
2
− bn

2i

)
e−inx =

1

2i
· i
i

=
i

−2
=
−1

2
⇒
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Fourier series in complex form

S(x) =
1

2
a0 +

∞∑
n=1

(
an
2

+
−ibn

2

)
e inx + +

(
an
2

+
ibn
2i

)
e−inx =

=
1

2
a0 +

∞∑
n=1

(
an
2

+
−ibn

2

)
e inx +

∞∑
n=1

(
an
2

+
ibn
2i

)
e−inx

=
1

2
a0 +

∞∑
n=1

(
an
2

+
−ibn

2

)
e inx +

−1∑
n=−∞

(
a−n

2
+

ib−n
2i

)
e inx .

Define c0 = a0, cn = (an − ibn)/2, c−n = (an + ibn)/2, n ∈ N,
then one obtains:

S(x) =
∞∑

n=−∞

cne
inx .
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Fourier coefficients in complex form

1

2
(an − ibn) =

1

2π

∫ 2π

0

f (x)(cos(nx)− i sin(nx))dx

=
1

2π

∫ 2π

0

f (x)e−inxdx ,

cn =
1

2π

∫ 2π

0

f (x)e−inxdx ,

if
∞∑

n=−∞

|cn| converges absolutely, then:

f (x) =
∞∑

n=−∞

cne
inx .
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Orthogonality of the complex exponents

Assume n,m ∈ N:

1

2π

∫ 2π

0

e inxe−imxdx =

∫ 2π

0

e i(n−m)xdx =

=
1

2π

∫ 2π

0

cos((n −m)x) + i sin((n −m)x)dx =

=

{
1, n = m
0, n 6= m.

.
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Fourier series for T -periodic functions

If f (x) = f (x + T ) and T is the smallest period of the
function f (x), then the Fourier series for this function can be
constructed by following formulae:

an =
2

T

∫ T

0

f (x) cos

(
2π

T
xn

)
dx ,

bn =
2

T

∫ T

0

f (x) sin

(
2π

T
xn

)
dx ,

S(x) =
1

2
a0 +

∞∑
n=1

an cos

(
2π

T
xn

)
+ bn sin

(
2π

T
xn

)
.
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Fourier series for T -periodic functions in complex

form

cn =
1

T

∫ T

0

f (x)e−i
2π
T
nxdx ,

S(x) =
∞∑

n=−∞

cne
i 2π
T
xn.
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Multiplication and convolution

S(x) =
∞∑

n=−∞

cne
inx , Q(x) =

∞∑
n=−∞

qne
inx ,

S(x)Q(x) =
∞∑

n=−∞

cne
inx

∞∑
k=−∞

qke
ikx =

∞∑
m=−∞

pme
inx ,

pm =
∑

k+n=m

cnqk , pm =
∞∑

n=−∞

cnqm−n.
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