Lecture 3. Power series

O.M. Kiselev o.kiselev@innopolis.ru

Innopolis university

February 13, 2023

Power series

Differentiating and integration

Multiplication and convolutions

Power series

Differentiating and integration

Multiplication and convolutions

Solutions of differential equations

Power series

Differentiating and integration

Multiplication and convolutions

Definitions

The power series has a form:

$$S(x) = \sum_{n=0}^{\infty} a_n x^n$$
 or $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$.

Changing of the variable $x - x_0 \rightarrow \xi$ allows one to rewrite the right-hand form of the power series to the left-hand one. Therefore we will study the left-hand side formula for the power series. Here x is considered as independent variable and properties f the series depend on the value of x.

$$S(x) = \sum_{n=0}^{\infty} x^n,$$
$$P(x) = \sum_{n=0}^{\infty} \frac{n^2}{n^3 + 1} x^n.$$

Power series

Differentiating and integration

Multiplication and convolutions

Counterexamples

$$f(x) = e^{-1/x^2}, \ x \neq 0, \ f(0) = 0.$$
$$f(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}, \quad a_n = \frac{d^n}{dx^n} (e^{-1/x^2})|_{x=0} = 0.$$
$$Q(x) = \sum_{n=0}^{\infty} \frac{x^n \sin(nx)}{n+1}, \text{ is a functional but it is not a power series.}$$

Power series

Differentiating and integration

Multiplication and convolutions

The tests of convergence

A convergence of power series can be established by the same tests like one for the numerical series.

The ratio test:

The series converges for the values of *x*:

$$\lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x| < 1.$$
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \Rightarrow |x| < \frac{1}{\rho}.$$

The series absolute converges $\forall x : |x| < \frac{1}{\rho}$ and diverges $\forall x : |x| > \frac{1}{\rho}$.

Root test

$$\begin{split} \lim_{n \to \infty} \sqrt[n]{|a_n x^n|} &= \lim_{n \to \infty} \sqrt[n]{|a_n|} |x| < 1.\\ \lim_{n \to \infty} \sqrt[n]{|a_n|} &= \rho \Rightarrow |x| < \frac{1}{\rho}. \end{split}$$

The series absolute converges $\forall x : |x| < \frac{1}{\rho}$ and diverges $\forall x : |x| > \frac{1}{\rho}$.

Convergence of the power series

Theorem about the radius of convergence

If the series power series

$$S(x) = \sum_{n=0}^{\infty} a_n x^n$$

converges for $x = x_0$, then this series absolute converges in the interval $|x| < |x_0|$.

The largest value R of |x| for the convergence of the power series is called the **radius of convergence**.

The radius of convergence. Examples

$$\sum_{n=1}^{\infty} \frac{x^n}{n!}, \ R = 1;$$
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}, \ \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{(n+1)} = 0 \Rightarrow R = \infty,$$
$$\sum_{n=1}^{\infty} x^n n!, \ \lim_{n \to \infty} \frac{(n+1)!}{n!} = \lim_{n \to \infty} (n+1) = \infty \Rightarrow R = 0.$$

Power series

Differentiating and integration

Multiplication and convolutions

Proof the theorem about interval of convergence

If the series converges at $x = x_0$, then

 $\lim_{n \to \infty} a_n x_0^n \to 0 \implies \exists N, \forall n > N : |a_n| < \frac{1}{|x_0|^n}.$ Due to the comparison theorem: $\sum_{n=N}^{\infty} a_n x^n < \sum_{n=N}^{\infty} \left| \frac{x}{x_0} \right|^n.$ $\forall x : \left| \frac{x}{x_0} \right| < 1, \text{ hence the last series converges.}$

Then the series S(x) absolutely converges $\forall x : |x| < |x_0|$.

The Cauchy -Hadamard theorem

The radius of convergence and the root test

If R is the radius of convergence, then

$$\frac{1}{R} = \rho = \overline{\lim_{n=0}^{n}} \sqrt[n]{|a_n|}.$$

Proof. We consider only case $0 < \rho < \infty$. Then $\forall \epsilon > 0 \exists N, \forall n > N |a_n| |x|^n \leq (\rho + \epsilon)^n |x|^n, \forall |x| < 1/(\rho + \epsilon)$. Hence:

$$\sum_{n=0}^\infty |a_n||x|^n \leq \sum_{n=0}^\infty q^n, \ q=(
ho+\epsilon)|x|<1.$$

Power series

Differentiating and integration

Multiplication and convolutions

The Cauchy -Hadamard theorem. Proof.

Vice versa: $\forall N \exists \epsilon > 0, n, n_l > N : \{a_{n_l}\} \subset \{a_n\} : |a_{n_l}| > (\rho - \epsilon)|x^{n_l}| > 1, |x| > 1/(\rho + \epsilon)$, then the series diverges for $|x| > 1/\rho$.

Derivative of the power series

Theorem about differentiating

The radius of convergence R does not changed for term by term differentiated power series.

Proof.

$$\sum_{n=0}^{\infty} \frac{d}{dx} (a_n x^n) = \sum_{n=0}^{\infty} n a_n x^{n-1}.$$
$$\lim_{n \to \infty} \sqrt[n]{n} |a_n| = \lim_{n \to \infty} \sqrt[n]{n} \lim_{n \to \infty} \sqrt[n]{|a_n|},$$
$$\lim_{n \to \infty} \log(\sqrt[n]{n}) = \lim_{n \to \infty} \frac{\log(n)}{n} = 0 \Rightarrow \lim_{n \to \infty} \sqrt[n]{n} = 1,$$
$$\lim_{n \to \infty} \sqrt[n]{n} |a_n| = \frac{1}{R}.$$

Theorem about differentiating of a function in the form of the series

Let S(x) be presented in the form of power series:

$$S(x)=\sum_{n=0}^{\infty}a_nx^n.$$

and ${\it R}$ is the radius of convergence of the series. Then

$$S'(x) = \sum_{n=0}^{\infty} na_n x^{n-1}, \forall x, \ |x| < R.$$

Power series

Differentiating and integration

Multiplication and convolutions

Theorem about differentiating of a function in the form of series. Proof.

$$S'(x) = \lim_{\Delta \to 0} \frac{1}{\Delta} \left(\sum_{n=0}^{\infty} a_n (x+\Delta)^n - \sum_{n=0}^{\infty} a_n x^n \right) =$$
$$\lim_{\Delta \to 0} \frac{1}{\Delta} \left(\sum_{n=0}^{\infty} a_n ((x+\Delta)^n - x^n) \right) =$$
$$\lim_{\Delta \to 0} \frac{1}{\Delta} \left(\Delta \sum_{n=0}^{\infty} \left(a_n n x^{n-1} + \Delta a_n \sum_{k=2}^n \frac{n!}{k! (n-k)!} \Delta^{k-2} x^{n-(k-2)} \right) \right) =$$
$$\sum_{n=0}^{\infty} a_n n x^{n-1} + \lim_{\Delta \to 0} \Delta \sum_{n=2}^{\infty} \left(\sum_{k=2}^n \frac{n!}{k! (n-k)!} \Delta^{k-2} x^{n-(k-2)} \right) a_n.$$

Power series

Differentiating and integration

Multiplication and convolutions

Theorem about differentiating of a function in the form of series

Proof.

Power series

Differentiating and integration

Multiplication and convolutions

Theorem about differentiating of a function in the form of series

$$\forall x: |x| < R, \ \exists \Delta: \lim_{n \to \infty} \frac{(n+1)(n+2)|a_{n+1}|}{n(n+1)|a_n|} |\Delta + x| = \frac{|\Delta + x|}{R} < 1.$$

The series converges and the limit equals 0. Then

$$S'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}.$$

Power series Differentiating and integration Multiplication and convolutions Solutions of differential equations

Differentiating of power series. Examples

$$\frac{d}{dx}\sum_{n=1}^{\infty}\frac{x^n}{n} = \sum_{n=1}^{\infty}x^{n-1} = \sum_{n=0}^{\infty}x^n = \frac{1}{1-x}.$$
$$\frac{d}{dx}\left(x\sum_{n=0}^{\infty}\frac{x^n}{(n+1)^2}\right) = \sum_{n=0}^{\infty}\frac{x^n}{n+1} = \frac{1}{x}\sum_{n=0}^{\infty}\frac{x^n}{n} = -\frac{\log(1-x)}{x}.$$

Counterexample:

$$\frac{d}{dx}\sum_{n=1}^{\infty}\frac{\sin(nx)}{n^2}\neq\sum_{n=1}^{\infty}\frac{d}{dx}\left(\frac{\sin(nx)}{n^2}\right)=\sum_{n=1}^{\infty}\frac{\cos(nx)}{n}$$

The right-hand side series diverges at $x = 2\pi$.

Power series

Differentiating and integration

Multiplication and convolutions

Integration of the power series

Theorem about Integrating of the power series

The radius of convergence R does not changed for term by term integrated power series.

Proof. Consider term by term antiderivative of the series:

$$\sum_{n=0}^{\infty} \int a_n x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}.$$
$$\lim_{n \to \infty} \sqrt[n]{\frac{|a_n|}{(n+1)}} = \frac{\lim_{n \to \infty} \sqrt[n]{|a_n|}}{\lim_{n \to \infty} \sqrt[n]{n+1}},$$
$$\lim_{n \to \infty} \log(\sqrt[n]{n+1}) = \lim_{n \to \infty} \frac{\log(n+1)}{n} = 0 \Rightarrow \lim_{n \to \infty} \sqrt[n]{n+1} = 1,$$
$$\lim_{n \to \infty} \sqrt[n]{\frac{|a_n|}{(n+1)}} = \frac{1}{R}.$$

Power series

Differentiating and integration

Corollary. Definite integrals over the interval of convergence

$$S(x) = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1} \Rightarrow S'(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Let R be a radius of convergence for the series

$$S'(x)=\sum_{n=0}^{\infty}a_nx^n.$$

If $-R < \alpha < \beta < R$ then:

$$\int_{\alpha}^{\beta}\sum_{n=0}^{\infty}a_nx^n\,dx=\sum_{n=0}^{\infty}\frac{a_n}{n+1}(\beta^n-\alpha^n).$$

Differentiating and integration

Multiplication and convolutions

Integration of series. Examples

Power series

Differentiating and integration

Multiplication and convolutions

Multiplication of power series

Let R is the radius of convergence for both power series:

$$A(x) = \sum_{n=0}^{\infty} a_n x^n, \ B(x) = \sum_{n=0}^{\infty} b_n x^n.$$

Then:

$$\sum_{n=0}^{\infty} a_n x^n \cdot \sum_{m=0}^{\infty} b_m x^m = \lim_{N \to \infty} \lim_{M \to \infty} \sum_{n=0}^{N} \sum_{m=0}^{M} a_n x^n b_m x^m =$$
$$\lim_{N \to \infty} \lim_{M \to \infty} \sum_{n=0}^{N} \sum_{m=0}^{M} a_n b_m x^{n+m} = \lim_{N \to \infty} \sum_{n=0}^{N} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) x^n =$$

$$=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}a_{k}b_{n-k}\right)x^{n}.$$

Power series

Differentiating and integration

A convolution

The sum

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

is called the **convolution**.

An example. $a_n = (-1)^n$, $b_n = (1/n!)$:

$$c_{0} = 1, \ c_{1} = 1 - 1 = 0, \ c_{2} = \frac{1}{2} - 1 + 1 = \frac{1}{2},$$
$$c_{3} = \frac{1}{6} - 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{1} - 1 = \frac{1}{3},$$
$$c_{n} = \sum_{k=0}^{n} \frac{(-1)^{k}}{(n-k)!}.$$

Power series

Differentiating and integration

Multiplication and convolutions

Differential equations

Definition

An equation which contains derivatives of unknown function is called differential equation.

The differential equations define behavior of a lot things of different nature like sociology, biology, physics.

$$\frac{du}{dx} = -u,$$
$$\frac{d^2u}{dx^2} = -u,$$
$$\frac{d^2u}{dx^2} = -\sin(u) - \mu u.$$

Power series for the differential equations

Let's find the solution for the equation:

$$\frac{du}{dx} = ku, \ u = \sum_{n=0}^{\infty} u_n x^n, \Rightarrow \sum_{n=1}^{\infty} nu_n x^{n-1} = k \sum_{n=0}^{\infty} u_n x^n,$$
$$nu_n = ku_{n-1}, \ u_{n+1} = \frac{k}{n} u_n, u_0 = \text{const}, \ u_n = \frac{k^n}{n!} u_0, \ n > 0.$$
$$u(x) = \sum_{n=0}^{\infty} \frac{k^n}{n!} x^n u_0 = u_0 \sum_{n=0}^{\infty} \frac{(kx)^n}{n!} = u_0 e^{kx}.$$

Power series

Differentiating and integration

Multiplication and convolutions

Example. The Weber equation

$$\frac{d^2u}{dx^2} = \left(\frac{x^2}{4} + a\right)u, \ u = \sum_{n=0}^{\infty} u_n x^n,$$
$$\sum_{n=2}^{\infty} n(n-1)u_n x^{n-2} = \sum_{n=0}^{\infty} u_n \left(\frac{x^2}{4} + a\right)x^n,$$
$$2u_2 = au_0, \ 2 \cdot 3 \cdot u_3 = au_1,$$
$$3 \cdot 4 \cdot u_4 = au_2 + \frac{1}{4}u_0, \quad 4 \cdot 5 \cdot u_5 = au_3 + \frac{1}{4}u_1,$$

Power series

Differentiating and integration

Multiplication and convolutions

Example. The Weber equation

For general case one obtains:

n

$$\sum_{n=2}^{\infty} n(n-1)u_n x^{n-2} = \sum_{n=0}^{\infty} u_n (\frac{x^2}{4} + a) x^n,$$
$$u_{n+4} = \frac{u_n + au_{n+2}}{4(n+4)(n+3)},$$
$$\lim_{n \to \infty} \frac{u_{n+4}}{u_n + au_{n+2}} = \lim_{n \to \infty} \frac{1}{4(n+4)(n+3)} = 0.$$

Therefore the solution can be represented by two different series with odd and even powers of x and which have infinite radius of convergence.

The reason of the success for solving DE

The set $\{x^n\}_{n=0}^{\infty}$ one must consider as a basis set of linear independent vectors in some infinite dimensional space of function.

However, the power series does not define a function in general sense. One can always add function with zero coefficients:

 \sim

$$h(x) = \sum_{n=0}^{\infty} a_n x^n,$$

$$h(x) + f(x) = \sum_{n=0}^{\infty} a_n x^n, \text{ where}$$

$$f(x) = \sum_{n=0}^{\infty} f_n \frac{x^n}{n!}, \quad f_n = \frac{d^n}{dx^n} (e^{-1/x^2})|_{x=0} = 0.$$

Power series

Differentiating and integration

Multiplication and convolutions

Solutions of differential equations

Power series

Differentiating and integration

Multiplication and convolutions