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Lecture 3. Power series

Definitions

The power series has a form:

S(x) =
∞∑
n=0

anx
n or S(x) =

∞∑
n=0

an(x − x0)n.

Changing of the variable x − x0 → ξ allows one to rewrite the
right-hand form of the power series to the left-hand one. Therefore
we will study the left-hand side formula for the power series.
Here x is considered as independent variable and properties f the
series depend on the value of x .

S(x) =
∞∑
n=0

xn,

P(x) =
∞∑
n=0

n2

n3 + 1
xn.
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Lecture 3. Power series

Counterexamples

f (x) = e−1/x2

, x 6= 0, f (0) = 0.

f (x) =
∞∑
n=0

an
xn

n!
, an =

dn

dxn
(e−1/x2

)|x=0 = 0.

Q(x) =
∞∑
n=0

xn sin(nx)

n + 1
, is a functional but it is not a power series.
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Lecture 3. Power series

The tests of convergence

A convergence of power series can be established by the same
tests like one for the numerical series.

The ratio test:

The series converges for the values of x :

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x | < 1.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ ⇒ |x | < 1

ρ
.

The series absolute converges ∀x : |x | < 1
ρ

and diverges

∀x : |x | > 1
ρ

.
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Root test

lim
n→∞

n
√
|anxn| = lim

n→∞
n
√
|an| |x | < 1.

lim
n→∞

n
√
|an| = ρ ⇒ |x | < 1

ρ
.

The series absolute converges ∀x : |x | < 1
ρ

and diverges

∀x : |x | > 1
ρ

.
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Lecture 3. Power series

Convergence of the power series

Theorem about the radius of convergence

If the series power series

S(x) =
∞∑
n=0

anx
n

converges for x = x0, then this series absolute converges in the
interval |x | < |x0|.
The largest value R of |x | for the convergence of the power
series is called the radius of convergence.
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Lecture 3. Power series

The radius of convergence. Examples

∞∑
n=1

xn

n
, R = 1;

∞∑
n=1

xn

n!
, lim

n→∞

n!

(n + 1)!
= lim

n→∞

1

(n + 1)
= 0⇒ R =∞,

∞∑
n=1

xnn!, lim
n→∞

(n + 1)!

n!
= lim

n→∞
(n + 1) =∞⇒ R = 0.

Power series Differentiating and integration Multiplication and convolutions Solutions of differential equations



Lecture 3. Power series

Proof the theorem about interval of convergence

If the series converges at x = x0, then

lim
n→∞

anx
n
0 → 0 ⇒ ∃N ,∀n > N : |an| <

1

|x0|n
.

Due to the comparison theorem:
∞∑

n=N

anx
n <

∞∑
n=N

∣∣∣∣ xx0

∣∣∣∣n .
∀x :

∣∣∣∣ xx0

∣∣∣∣ < 1, hence the last series converges.

Then the series S(x) absolutely converges ∀x : |x | < |x0|.
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The Cauchy -Hadamard theorem

The radius of convergence and the root test

If R is the radius of convergence, then

1

R
= ρ = lim

n=0

n
√
|an|.

Proof. We consider only case 0 < ρ <∞. Then
∀ε > 0 ∃N , ∀n > N |an||x |n ≤ (ρ + ε)n|x |n,∀|x | < 1/(ρ + ε).
Hence:

∞∑
n=0

|an||x |n ≤
∞∑
n=0

qn, q = (ρ + ε)|x | < 1.
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The Cauchy -Hadamard theorem. Proof.

Vice versa: ∀N ∃ε > 0, n, nl > N : {anl} ⊂ {an} : |anl | >
(ρ− ε)|xnl | > 1, |x | > 1/(ρ + ε), then the series diverges for
|x | > 1/ρ.
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Lecture 3. Power series

Derivative of the power series

Theorem about differentiating

The radius of convergence R does not changed for term by
term differentiated power series.

Proof.
∞∑
n=0

d

dx
(anx

n) =
∞∑
n=0

nanx
n−1.

lim
n→∞

n
√
n|an| = lim

n→∞
n
√
n lim

n→∞
n
√
|an|,

lim
n→∞

log( n
√
n) = lim

n→∞

log(n)

n
= 0⇒ lim

n→∞
n
√
n = 1,

lim
n→∞

n
√

n|an| =
1

R
.
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Theorem about differentiating of a function in the

form of the series

Let S(x) be presented in the form of power series:

S(x) =
∞∑
n=0

anx
n.

and R is the radius of convergence of the series. Then

S ′(x) =
∞∑
n=0

nanx
n−1,∀x , |x | < R .
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Theorem about differentiating of a function in the form of series. Proof.

S ′(x) = lim
∆→0

1

∆

( ∞∑
n=0

an(x + ∆)n −
∞∑
n=0

anx
n

)
=

lim
∆→0

1

∆

( ∞∑
n=0

an((x + ∆)n − xn)

)
=

lim
∆→0

1

∆

(
∆
∞∑
n=0

(
annx

n−1 + ∆an

n∑
k=2

n!

k!(n − k)!
∆k−2xn−(k−2)

))
=

∞∑
n=0

annx
n−1 + lim

∆→0
∆
∞∑
n=2

(
n∑

k=2

n!

k!(n − k)!
∆k−2xn−(k−2)

)
an.
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Theorem about differentiating of a function in the form of series

Proof.

n(n + 1)|∆ + x |n−2 = n(n + 1)
n−2∑
k=0

(n − 2)!

k!(n − 2− k)!
|∆|k |x |n−(k−2),

n−2∑
k=0

n!

k!(n − 2− k)!
|∆|k |x |n−k >

n∑
k=2

n!

k!(n − k)!
|∆|k−2|x |n−(k−2) ⇒

n(n + 1)|∆ + x |n−2 >

n∑
k=2

n!

k!(n − k)!
|∆|k−2|x |n−(k−2),

lim
∆→0

∆
∞∑
n=2

(
n∑

k=2

n!

k!(n − k)!
∆k−2xn−(k−2)

)
|an| <

< lim
∆→0

∆
∞∑
n=2

n(n + 1)|∆ + x |n−2|an|
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Theorem about differentiating of a function in the form of series

∀x : |x | < R, ∃∆ : lim
n→∞

(n + 1)(n + 2)|an+1|
n(n + 1)|an|

|∆ + x | =
|∆ + x |

R
< 1.

The series converges and the limit equals 0. Then

S ′(x) =
∞∑
n=1

nanx
n−1.
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Differentiating of power series. Examples

d

dx

∞∑
n=1

xn

n
=
∞∑
n=1

xn−1 =
∞∑
n=0

xn =
1

1− x
.

d

dx

(
x
∞∑
n=0

xn

(n + 1)2

)
=
∞∑
n=0

xn

n + 1
=

1

x

∞∑
n=0

xn+1

n + 1
=

1

x

∞∑
n=1

xn

n
= − log(1− x)

x
.

Counterexample:

d

dx

∞∑
n=1

sin(nx)

n2
6=
∞∑
n=1

d

dx

(
sin(nx)

n2

)
=
∞∑
n=1

cos(nx)

n
.

The right-hand side series diverges at x = 2π.
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Integration of the power series

Theorem about Integrating of the power series

The radius of convergence R does not changed for term by
term integrated power series.

Proof. Consider term by term antiderivative of the series:
∞∑
n=0

∫
anx

ndx =
∞∑
n=0

an
n + 1

xn+1.

lim
n→∞

n

√
|an|

(n + 1)
=

limn→∞
n
√
|an|

limn→∞
n
√
n + 1

,

lim
n→∞

log( n
√
n + 1) = lim

n→∞

log(n + 1)

n
= 0⇒ lim

n→∞
n
√
n + 1 = 1,

lim
n→∞

n

√
|an|

(n + 1)
=

1

R
.
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Corollary. Definite integrals over the interval of

convergence

S(x) =
∞∑
n=0

an
xn+1

n + 1
⇒ S ′(x) =

∞∑
n=0

anx
n.

Let R be a radius of convergence for the series

S ′(x) =
∞∑
n=0

anx
n.

If −R < α < β < R then:∫ β

α

∞∑
n=0

anx
n dx =

∞∑
n=0

an
n + 1

(βn − αn).
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Integration of series. Examples

∫ x

0

∞∑
n=0

tndt =
∞∑
n=0

∫ x

0

tndt
∞∑
n=0

xn+1

n + 1
,∫ x

0

e−t
2

dt =

∫ x

0

∞∑
n=0

(−1)n
t2n

n!
dt =

∞∑
n=0

(−1)n
∫ x

0

t2n

n!
dt =

∞∑
n=0

(−1)n
x2n+1

(2n + 1) · n!
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Multiplication of power series

Let R is the radius of convergence for both power series:

A(x) =
∞∑
n=0

anx
n, B(x) =

∞∑
n=0

bnx
n.

Then:
∞∑
n=0

anx
n ·

∞∑
m=0

bmx
m = lim

N→∞
lim

M→∞

N∑
n=0

M∑
m=0

anx
nbmx

m =

lim
N→∞

lim
M→∞

N∑
n=0

M∑
m=0

anbmx
n+m = lim

N→∞

N∑
n=0

(
n∑

k=0

akbn−k

)
xn =

=
∞∑
n=0

(
n∑

k=0

akbn−k

)
xn.
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A convolution

The sum

cn =
n∑

k=0

akbn−k

is called the convolution.
An example. an = (−1)n, bn = (1/n!):

c0 = 1, c1 = 1− 1 = 0, c2 =
1

2
− 1 + 1 =

1

2
,

c3 =
1

6
− 1 · 1

2
+ 1 · 1

1
− 1 =

1

3
,

cn =
n∑

k=0

(−1)k

(n − k)!
.
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Differential equations

Definition

An equation which contains derivatives of unknown function is
called differential equation.

The differential equations define behavior of a lot things of
different nature like sociology, biology, physics.

du

dx
= −u,

d2u

dx2
= −u,

d2u

dx2
= − sin(u)− µu.
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Power series for the differential equations

Let’s find the solution for the equation:

du

dx
= ku, u =

∞∑
n=0

unx
n,⇒

∞∑
n=1

nunx
n−1 = k

∞∑
n=0

unx
n,

nun = kun−1, un+1 =
k

n
un, u0 = const, un =

kn

n!
u0, n > 0.

u(x) =
∞∑
n=0

kn

n!
xnu0 = u0

∞∑
n=0

(kx)n

n!
= u0e

kx .
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Example. The Weber equation

d2u

dx2
= (

x2

4
+ a)u, u =

∞∑
n=0

unx
n,

∞∑
n=2

n(n − 1)unx
n−2 =

∞∑
n=0

un(
x2

4
+ a)xn,

2u2 = au0, 2 · 3 · u3 = au1,

3 · 4 · u4 = au2 +
1

4
u0, 4 · 5 · u5 = au3 +

1

4
u1,
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Example. The Weber equation

For general case one obtains:

∞∑
n=2

n(n − 1)unx
n−2 =

∞∑
n=0

un(
x2

4
+ a)xn,

un+4 =
un + aun+2

4(n + 4)(n + 3)
,

lim
n→∞

un+4

un + aun+2
= lim

n→∞

1

4(n + 4)(n + 3)
= 0.

Therefore the solution can be represented by two different
series with odd and even powers of x and which have infinite
radius of convergence.
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The reason of the success for solving DE

The set {xn}∞n=0 one must consider as a basis set of linear
independent vectors in some infinite dimensional space of
function.
However, the power series does not define a function in general
sense. One can always add function with zero coefficients:

h(x) =
∞∑
n=0

anx
n,

h(x) + f (x) =
∞∑
n=0

anx
n, where

f (x) =
∞∑
n=0

fn
xn

n!
, fn =

dn

dxn
(e−1/x2

)|x=0 = 0.
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Summary

Power series

Differentiating and integration

Multiplication and convolutions

Solutions of differential equations
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