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Numeric series

Definitions

We will consider numeric series:

S = a1 + a2 + a3 + · · ·+ an + . . . .

S =
∞∑
n=1

an.

Both formulas must be considered as in pure formal sense.
You should not try to find the sum very often the sum in
general case does not exists!
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Numeric series

Example 1
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Numeric series

Example 2

S = 1− 1 + 1− 1 + 1− 1 + · · ·+ (−1)n+1 + . . . ,

S = 1− (1− 1 + 1− 1 + 1− 1 + · · ·+ (−1)n + . . . ),

S = 1− S , S =
1

2
.

S = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·+ (−1)n+1

n
+ . . . .

Let’s consider a finite sum:

Sn = 1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)n+1

n
The rest term

Rn = −(−1)n+2

n + 1
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Numeric series

Examples

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
+

1

13
+

1

15
− 1

4
+ · · · =

1.5(3)− 0.5 + 0.4(884670)− 0.25 + . . . .
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Numeric series

Definitions

The sum of several terms of the series:

SN =
N−1∑
n=1

an

is called partial sum.
Let find the partial sum of the geometric series:

SN =
N−1∑
n=0

qn = 1 + q + q2 + · · ·+ qN−1

qSN = q + q2 + · · ·+ qN ,

SN − qSN = 1− qn, SN =
1− qN

1− q
.
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Numeric series

Definitions

The series is called convergent if there exists the limit:

S = lim
N→∞

SN .

If the limit does not exists. then the series is called divergent
series.
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Numeric series

The convergence of the sequence

The Cauchy convergence test is a reformulated condition of
convergence of the sequence {Sn}.

Theorem

The series converges if ∀ε > 0 ∃N :

|
p∑

k=n

ak | < ε, ∀p > n > N .

Proof For convergent sequences one get the inequality
|Sp − Sn| < ε, p > n > N , then |

∑p
k=n ak | < ε, ∀p > n > N .
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Numeric series

Geometric series

The sum of the geometric series:

S = lim
N→∞

1− qN

1− q
=

1

1− q
.

The sum of the alternating series:

S =
∞∑
n=0

(−1)n, S2N = 0, S2N+1 = 1

The alternating series

S =
∞∑
n=0

(−1)n

diverges.
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Numeric series

The necessary condition for convergence

Theorem

If the series

S =
∞∑
n=0

an

converges, then
lim
n→∞

an = 0.

Proof. Assume ∃ limn→∞ Sn, Sn+1 = Sn + an. Due to the
uniqueness of the limit
∀ ε > 0∃N , ∀n > N : |Sn − Sn−1| < ε ⇒ |an| < ε.
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Numeric series

Divergence test

Theorem

If
lim
n→∞

an 6= 0.

then the series

S =
∞∑
n=0

an

diverges.

Proof of this theorem very close to the proof of the previous
theorem.
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Numeric series

The integral test theorem

Let f (x) is positive
continuous decreasing
function, then

∫∞
1

f (x)dx
and

∑∞
n=1 f (n) either

both converge or diverge.
Proof.

f (n) ≥
∫ n+1

n

f (x)dx ≥ f (n + 1)

N∑
n=1

f (n) ≥
∫ N+1

1

f (x)dx ≥
N∑

n=1

f (n + 1)

Sn ≥
∫ N+1

1

f (x)dx ≥ SN+1 − f (1).
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Numeric series

The integral test theorem. Proof

If the integral diverges, then {Sn} diverges. If the integral
converges then {SN+1} converges and vice verge.
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Numeric series

Harmonic series

S =
∞∑
n=1

1

n
related to

∫ N

1

dx

x
= log(N).

The integral diverge and due to the integral test the harmonic
series diverges.
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Numeric series

Slowly convergent and divergent series

S =
∞∑
n=1

1

n log2(n)
,

I (N) =

∫ N

2

dx

x log2(x)
=

1

log(2)
− 1

log(N)
.

To obtain right value of third decimal digit one must sum over
of 10300 terms.
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Numeric series

Slowly divergent series

S =
∞∑
n=1

1

n log(n)
,

I (N) =

∫ N

2

dx

x log(x)
= log(log(N))− log(log(2)).

The series diverges, but too slowly

S106 ∼ 2.625791914476011, S1012 ∼ 3.318939095035956.
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Numeric series

Absolute and conditional convergence

The series

S =
∞∑
n=0

an

converges absolute if the series

s =
∞∑
n=0

|an|

converges.
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Numeric series

Ratio test theorem

If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = q < 1,

then the series converges absolute. If q > 1 then the series
diverges.
Proof. ∀ε > 0 ∃N ,∀m > N ,∃Q : 1 > Q > q

|am+k | < |am+k−1|Q < · · · < |am|Qk ,
∞∑

k=m

|am|Qk =
|am|

1− Q
.

∞∑
n=1

|an| <
N∑

n=1

|an|+
|aN+1|
1− Q

.

The series converges.
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Numeric series

Ratio test theorem. Proof

If q > 1, then ∀ε > 0 ∃N ,∀m > N ,∃Q : 1 < Q < q

M∑
k=m

|am|Qk →∞

as M →∞, therefore the series diverges.
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Numeric series

Ratio test. An example

S =
∞∑
n=0

n2

3n
,

lim
n→∞

(n + 1)2

3n+1

3n

n2
=

1

3
lim
n→∞

(n + 1)2

n2
=

1

3
.

The series converges.
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Numeric series

Root test theorem

If
lim
n→∞

n
√
|an| = q < 1,

then the series

s =
∞∑
n=0

|an|

converges. If
lim
n→∞

n
√
|an| = q > 1,

the series diverges.
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Numeric series

Root test theorem. Proof

∀ε > 0 ∃N ,∀m > N ,∃Q : 1 > Q > q, m
√
|am| < Q, |am| <

Qm.

s =
∞∑
n=0

|an| ≤
N∑

n=0

|an|+
∞∑

n=N+1

Qn

The series converges.
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Numeric series

Root test theorem. Proof

If
lim
n→∞

n
√
|an| = q > 1,

∀ε > 0 ∃N ,∀m > N ,∃Q : 1 < Q < q,
m
√
|am| > Q, |am| > Qm.

s =
∞∑
n=0

|an| ≥
N∑

n=0

|an|+
∞∑

n=N+1

Qn

M∑
n=N+1

Qn →∞, M →∞.

The series diverges.
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Root test. An example

S =
∞∑
n=0

n

3n
,

lim
n→∞

√
n

3n
=

1

3
lim
n→∞

n
√
n

lim
n→∞

log( n
√
n) = lim

n→∞

log(n)

n
= 0,

1

3
lim
n→∞

n
√
n =

1

3
.

The series converges.
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Numeric series

Comparison test

If ∃N such that ∀n > N the inequalities an > bn > 0 are true
and the series

S =
∞∑
n=1

an

converges, then the series

s =
∞∑
n=1

bn

converges.
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Numeric series

Comparison test. Proof
Proof.

s =
N∑

n=1

bn +
∞∑

n=N+1

bn.

The first sun is bounded due to the bounded number of the
terms and the second series is bounded due to the properties
of an > bn > 0 and the convergence of the series S .
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Numeric series

Leibniz theorem about alternating series

Let un > un+1 then

S =
∞∑
n=0

(−1)nun

converges.
Proof.

S = (u0 − u1) + (u2 − u3) + (u4 − u5) + . . . .

Define σn = (u2n − u2n+1) > 0, then the partial sums

Sn =
N∑

n=0

σn

increase.
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Numeric series

Leibniz theorem about alternating series. Proof

S = u0 − (u1 − u2)− (u3 − u4)− (u5 − u6)− u7 + . . . .

Define τn = u2n−1 − u2n > 0. The partial sums

Sn = u0 − τ1 − τ2 − . . .

Then Sn is bounded. Therefore the sequence Sn has a limit.
The alternating series converges.
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Alternating series. An example

The series

S =
∞∑
n=1

(−1)n
1

n

converges.
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Riemann series theorem

Consider the series

S =
∞∑
n=0

(−1)nun,

where un > un+1 > 0, un → 0 as n→∞ and both series

s+ =
∞∑
n=0

u2n, s− =
∞∑
n=0

u2n+1

diverge.
Then one can rearrangement of the series such way, that the
sum might be any number.
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