Numeric series

O.M. Kiselev o.kiselev@innopolis.ru

Innopolis university

January 27, 2023

Definitions and examples

Properties of coefficients for the series

The integral test

Absolute convergence

Comparison test

Alternating series

Definitions

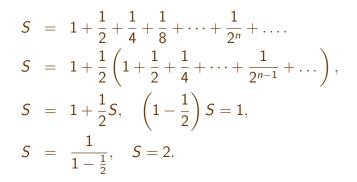
We will consider numeric series:

$$S = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

$$S = \sum_{n=1}^{\infty} a_n.$$

Both formulas must be considered as in pure formal sense. You should not try to find the sum very often the sum in general case does not exists!

Example 1



Example 2

$$S = 1 - 1 + 1 - 1 + 1 - 1 + \dots + (-1)^{n+1} + \dots,$$

$$S = 1 - (1 - 1 + 1 - 1 + 1 - 1 + \dots + (-1)^n + \dots),$$

$$S = 1 - S, \quad S = \frac{1}{2}.$$

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots + \frac{(-1)^{n+1}}{n} + \dots$$

Let's consider a finite sum:

$$S_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n}$$

The rest term

$$R_n = -\frac{(-1)^{n+2}}{n+1}$$

$$1 + \frac{1}{3} + \frac{1}{5} - \frac{1}{2} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} - \frac{1}{4} + \dots = \\1.5(3) - 0.5 + 0.4(884670) - 0.25 + \dots$$

Definitions

The sum of several terms of the series:

$$S_N = \sum_{n=1}^{N-1} a_n$$

is called partial sum.

Let find the partial sum of the geometric series:

$$egin{array}{rcl} S_{\mathcal{N}}&=&\sum_{n=0}^{N-1}q^n=1+q+q^2+\dots+q^{N-1}\ qS_{\mathcal{N}}&=&q+q^2+\dots+q^{\mathcal{N}},\ S_{\mathcal{N}}-qS_{\mathcal{N}}&=&1-q^n, & S_{\mathcal{N}}=rac{1-q^{\mathcal{N}}}{1-q}. \end{array}$$

Definitions

The series is called **convergent** if there exists the limit:

$$S=\lim_{N\to\infty}S_N.$$

If the limit does not exists. then the series is called **divergent** series.

The convergence of the sequence

The Cauchy convergence test is a reformulated condition of convergence of the sequence $\{S_n\}$.

Theorem

The series converges if $\forall \epsilon > 0 \exists N$:

$$|\sum_{k=n}^{p}a_{k}|<\epsilon,\,\forall p>n>N.$$

Proof For convergent sequences one get the inequality $|S_p - S_n| < \epsilon, \ p > n > N$, then $|\sum_{k=n}^{p} a_k| < \epsilon, \ \forall p > n > N$.

Geometric series

The sum of the geometric series:

$$S = \lim_{N \to \infty} \frac{1 - q^N}{1 - q} = \frac{1}{1 - q}.$$

The sum of the alternating series:

$$S = \sum_{n=0}^{\infty} (-1)^n$$
, $S_{2N} = 0$, $S_{2N+1} = 1$

The alternating series

$$S = \sum_{n=0}^{\infty} (-1)^n$$

diverges.

The necessary condition for convergence

Theorem

If the series

$$S=\sum_{n=0}^{\infty}a_n$$

converges, then

 $\lim_{n\to\infty}a_n=0.$

Proof. Assume $\exists \lim_{n\to\infty} S_n$, $S_{n+1} = S_n + a_n$. Due to the uniqueness of the limit $\forall \epsilon > 0 \exists N, \forall n > N : |S_n - S_{n-1}| < \epsilon \Rightarrow |a_n| < \epsilon$.

Divergence test

Theorem

lf

$$\lim_{n\to\infty}a_n\neq 0.$$

then the series

$$S=\sum_{n=0}^{\infty}a_n$$

diverges.

Proof of this theorem very close to the proof of the previous theorem.

The integral test theorem

Let f(x) is positive continuous decreasing ‡(n) function, then $\int_{1}^{\infty} f(x) dx$ and $\sum_{n=1}^{\infty} f(n)$ either both converge or diverge. Proof. 2345678 $f(n) \geq \int^{n+1} f(x) dx \geq f(n+1)$ $\sum_{n=1}^{N} f(n) \ge \int_{1}^{N+1} f(x) dx \ge \sum_{n=1}^{N} f(n+1)$ n-1 $S_n \geq \int_1^{N+1} f(x) dx \geq S_{N+1} - f(1).$

The integral test theorem. Proof

If the integral diverges, then $\{S_n\}$ diverges. If the integral converges then $\{S_{N+1}\}$ converges and vice verge.

Harmonic series

$$S = \sum_{n=1}^{\infty} \frac{1}{n}$$
 related to $\int_{1}^{N} \frac{dx}{x} = \log(N).$

The integral diverge and due to the integral test the harmonic series diverges.

Slowly convergent and divergent series

$$S = \sum_{n=1}^{\infty} \frac{1}{n \log^2(n)},$$
$$I(N) = \int_2^N \frac{dx}{x \log^2(x)} = \frac{1}{\log(2)} - \frac{1}{\log(N)}.$$

To obtain right value of third decimal digit one must sum over of 10^{300} terms.

Slowly divergent series

$$S = \sum_{n=1}^{\infty} \frac{1}{n \log(n)},$$
$$I(N) = \int_{2}^{N} \frac{dx}{x \log(x)} = \log(\log(N)) - \log(\log(2)).$$

 ∞

The series diverges, but too slowly

 $S_{10^6} \sim 2.625791914476011, \quad S_{10^{12}} \sim 3.318939095035956.$

Absolute and conditional convergence

The series

$$S = \sum_{n=0}^{\infty} a_n$$

converges absolute if the series

$$s=\sum_{n=0}^{\infty}|a_n|$$

converges.

Definitions and examples	Coefficients of the series	The integral test	Absolute convergence	Comparison test	Alternating series
0000000		00000	●0000000		00000

Ratio test theorem

lf

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=q<1,$$

then the series converges absolute. If q > 1 then the series diverges.

Proof. $\forall \epsilon > 0 \exists N, \forall m > N, \exists Q : 1 > Q > q$

$$egin{aligned} |a_{m+k}| < |a_{m+k-1}|Q < \cdots < |a_m|Q^k, \ &\sum_{k=m}^\infty |a_m|Q^k = rac{|a_m|}{1-Q}. \ &\sum_{n=1}^\infty |a_n| < \sum_{n=1}^N |a_n| + rac{|a_{N+1}|}{1-Q}. \end{aligned}$$

The series converges.

Definitions and examples	Coefficients of the series	The integral test	Absolute convergence	Comparison test	Alternating series
0000000		00000	0000000		00000

Ratio test theorem. Proof

If q > 1, then $orall \epsilon > 0 \exists N, orall m > N, \exists Q : 1 < Q < q$

$$\sum_{k=m}^{M} |a_m| Q^k \to \infty$$

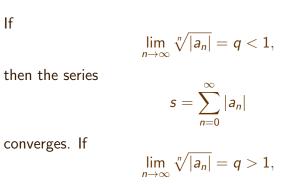
as $M \to \infty$, therefore the series diverges.

Ratio test. An example

$$S = \sum_{n=0}^{\infty} \frac{n^2}{3^n},$$
$$\lim_{n \to \infty} \frac{(n+1)^2}{3^{n+1}} \frac{3^n}{n^2} = \frac{1}{3} \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \frac{1}{3}.$$

The series converges.

Root test theorem



the series diverges.

Root test theorem. Proof

 $orall \epsilon > 0 \exists N, orall m > N, \exists Q : 1 > Q > q, \ \sqrt[m]{|a_m|} < Q, \ |a_m| < Q^m.$

$$s = \sum_{n=0}^{\infty} |a_n| \le \sum_{n=0}^{N} |a_n| + \sum_{n=N+1}^{\infty} Q^n$$

The series converges.

Root test theorem. Proof

lf

f

$$egin{aligned} & \lim_{n o \infty} \sqrt[n]{|a_n|} = q > 1, \ &
otag e < 0 \, \exists N, orall m > N, \exists Q : 1 < Q < q, \ &
otag w / |a_m| > Q, \quad |a_m| > Q^m. \end{aligned}$$

$$s = \sum_{n=0}^{\infty} |a_n| \ge \sum_{n=0}^{N} |a_n| + \sum_{n=N+1}^{\infty} Q^n$$

 $\sum_{n=N+1}^{M} Q^n \to \infty, \quad M \to \infty.$

The series diverges.

Root test. An example

$$S = \sum_{n=0}^{\infty} \frac{n}{3^n},$$
$$\lim_{n \to \infty} \sqrt{\frac{n}{3^n}} = \frac{1}{3} \lim_{n \to \infty} \sqrt[n]{n}$$
$$\lim_{n \to \infty} \log(\sqrt[n]{n}) = \lim_{n \to \infty} \frac{\log(n)}{n} = 0,$$
$$\frac{1}{3} \lim_{n \to \infty} \sqrt[n]{n} = \frac{1}{3}.$$

The series converges.

Comparison test

If $\exists N$ such that $\forall n > N$ the inequalities $a_n > b_n > 0$ are true and the series

$$S=\sum_{n=1}^{\infty}a_n$$

converges, then the series

$$s=\sum_{n=1}^{\infty}b_n$$

converges.

Comparison test. Proof Proof.

$$s=\sum_{n=1}^N b_n+\sum_{n=N+1}^\infty b_n.$$

The first sun is bounded due to the bounded number of the terms and the second series is bounded due to the properties of $a_n > b_n > 0$ and the convergence of the series *S*.

Leibniz theorem about alternating series

Let $u_n > u_{n+1}$ then

$$S=\sum_{n=0}^{\infty}(-1)^n u_n$$

converges. Proof.

$$S = (u_0 - u_1) + (u_2 - u_3) + (u_4 - u_5) + \dots$$

Define $\sigma_n = (u_{2n} - u_{2n+1}) > 0$, then the partial sums

$$S_n = \sum_{n=0}^N \sigma_n$$

increase.

Definitions and examples	Coefficients of the series	The integral test	Absolute convergence	Comparison test	Alternating series
0000000		00000	00000000		●0000

Leibniz theorem about alternating series. Proof

$$S = u_0 - (u_1 - u_2) - (u_3 - u_4) - (u_5 - u_6) - u_7 + \dots$$

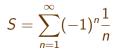
Define $\tau_n = u_{2n-1} - u_{2n} > 0$. The partial sums

$$S_n = u_0 - \tau_1 - \tau_2 - \ldots$$

Then S_n is bounded. Therefore the sequence S_n has a limit. The alternating series converges.

Alternating series. An example

The series



converges.

Definitions and examples	Coefficients of the series	The integral test	Absolute convergence	Comparison test	Alternating series
0000000		00000	0000000		00000

Riemann series theorem

Consider the series

$$S=\sum_{n=0}^{\infty}(-1)^n u_n,$$

where $u_n > u_{n+1} > 0$, $u_n \to 0$ as $n \to \infty$ and both series

$$s_{+} = \sum_{n=0}^{\infty} u_{2n}, \quad s_{-} = \sum_{n=0}^{\infty} u_{2n+1}$$

diverge.

Then one can rearrangement of the series such way, that the sum might be any number.

Summary

Definitions and examples

Properties of coefficients for the series

The integral test

Absolute convergence

Comparison test

Alternating series