Sapienti sat-2

O.M. Kiselev o.kiselev@innopolis.ru

Innopolis university

May 5, 2023

Curves Vector fields The Green's theorem An area on a surface The Osrogradsky-Gauss theorem

Curves

Vector fields

The Green's theorem

An area on a surface

The Osrogradsky-Gauss theorem

A parametric form of a curve

Let us consider a curve on a plane. Assume that in the Cartesian coordinates can be written as x = x(t) and y = y(t).

$$\vec{v} = (v_x, v_y)$$
$$\vec{B}(x(t_1), y(t_1))$$

A length of a curve

The components of tangent vector at given point can be defined as the derivatives with respect to $t v_x = \dot{x}, v_y = \dot{y}$. The length of the tangent vector:

$$V = \sqrt{v_x^2 + v_y^2}.$$

The length of the path for the curve of the point over the interval of the parameter $t \in [t_0, t_1]$:

$$S=\int_{t_0}^{t_1}\sqrt{\dot{x}^2+\dot{y}^2}dt.$$

A curvature

The second derivative at the point:

$$a_x = \dot{v}_x = \ddot{x}, \quad a_y = \dot{v}_y = \ddot{y}.$$

Theorem

If $\sqrt{v_x^2 + v_y^2} = \text{const}$, then the vector of the second derivative always is orthogonal to the tangent vector.

A curvature

Proof. Let us differentiate the scalar product:

$$\begin{aligned} \frac{d}{dt}(\vec{v},\vec{v}) &= 0,\\ \left(\frac{d}{dt}\vec{v},\vec{v}\right) + \left(\vec{v},\frac{d}{dt}\vec{v}\right) &= 0\\ 2\left(\frac{d}{dt}\vec{v},\vec{v}\right) &= 0\\ \left(\vec{a},\vec{v}\right) &= 0. \end{aligned}$$

A first derivative and tangent vector for the circle

Let us consider the circle:

$$x = R\cos(\omega t), \quad y = R\sin(\omega t).$$

The tangent vector is:

$$v_x = -R\omega\sin(\omega t), \quad v_y = R\omega\cos(\omega t).$$

The formula for the length of the tangent line looks like:

$$V = \sqrt{R^2 \omega^2 \sin^2(\omega t) + R^2 \omega^2 \cos^2(\omega t)} = R \omega.$$

Second derivative for the circle

The second derivative is defined the following formulas:

$$a_x = -R\omega^2\cos(\omega t), \quad a_y = -R\omega^2\sin(\omega t).$$

and

$$|a_n|=\sqrt{a_x^2+a_y^2}=R\omega^2=\frac{V^2}{R}.$$

This vector is orthogonal with respect to the tangent one. Therefore one obtains a *normal* vector.

$$\frac{1}{R} = \frac{|a_n|}{V^2}.$$

The quantity $\rho = 1/R$ is called a curvature.

Second derivative in general case

The second derivative might be represented as a sum two orthogonal vectors as the tangent direction and the normal one. The value of the tangent

content of the second derivative can be obtained as follows:

$$|a_T| = rac{(ec{a}, ec{v})}{\sqrt{(ec{v}, ec{v})}}.$$

The projection of the second vector of the tangent line can be represented as follows:

$$ec{a}_{T} = rac{(ec{a},ec{v})}{(ec{v},ec{v})}ec{v} = rac{a_{x}v_{x} + a_{y}v_{y}}{v_{x}^{2} + v_{y}^{2}}(v_{x}ec{i} + v_{y}ec{j}).$$

Normal vector

The normal vector can be represented as:

$$\vec{a}_n = \vec{a} - \vec{a}_T.$$

The same formula in the coordinate form is follows:

$$\vec{a}_{n} = \frac{1}{v_{x}^{2} + v_{y}^{2}} (a_{x}(v_{x}^{2} + v_{y}^{2})\vec{i} + a_{y}(v_{x}^{2} + v_{y}^{2})\vec{j} - (a_{x}v_{x} + a_{y}v_{y})v_{x}\vec{i} - (a_{x}v_{x} + a_{y}v_{y})v_{y}\vec{j}) = \frac{(a_{x}v_{y} - a_{y}v_{x})}{v_{x}^{2} + v_{y}^{2}} (v_{y}\vec{i} - v_{x}\vec{j})$$

The length of the normal vector:

$$|a_n| = \sqrt{(a,a) - (a_T,a_T)} = \frac{|a_x v_y - a_y v_x|}{|\vec{v}|}.$$

The curvature in a general case

The formula for curvature of the curve:

$$\rho = \frac{|a_n|}{(\vec{v},\vec{v})} = \frac{\sqrt{(a,a) - (a_T,a_T)}}{(\vec{v},\vec{v})} = \frac{|a_xv_y - a_yv_x|}{(\vec{v},\vec{v})^{3/2}} = \frac{|\vec{a}\times\vec{v}|}{(\vec{v},\vec{v})^{3/2}}.$$

General formulas

The radius-vector for the trajectory is

 $\vec{r} = (x(t), y(t), z(t)).$

The tangent vector to the curve is following:

$$\vec{v} = rac{d}{dt}\vec{r} = (\dot{x}, \dot{y}, \dot{z})$$

The second derivative is:

$$\vec{a}=\frac{d^2}{dt^2}\vec{r}=(\ddot{x},\ddot{y},\ddot{z}).$$

Curves Vector fields The Green's theorem An area on a surface The Osrogradsky-Gauss theorem

The vector of the second derivatives in 3D

The tangent projection of the vector of a second derivative:

$$ec{a}_T = rac{(ec{a},ec{v})}{(ec{v},ec{v})}ec{v} = rac{a_x v_x + a_y v_y + a_z v_z}{v_x^2 + v_y^2 + v_z^2} (v_x ec{i} + v_y ec{j} + v_z ec{k}).$$

The normal component of the second derivative vector:

$$\vec{a}_n = \vec{a} - \vec{a}_T.$$

The normal and tangent vectors define the osculating plane. Define a unit vectors $\vec{u} = \frac{\vec{v}}{\sqrt{(\vec{v},\vec{v})}}$ and $\vec{n} = \frac{\vec{a}_n}{\sqrt{(\vec{a}_n,\vec{a}_n)}}$. The vector $\vec{b} = \vec{u} \times \vec{n}$ is called *binormal*. The vectors $\vec{u}, \vec{n}, \vec{b}$ define the orthogonal system of the vectors connected with the curve.

A torsion of the curve

Torsion is a derivative of the angle of rotation of osculating plane with respect to changing the length of the curve.

The normal vector to the osculation plane:

 $\vec{b} = \vec{v} \times \vec{a}.$

The formula for the torsion has the form:

$$\tau = |\vec{\dot{b}}| \frac{dt}{dl}.$$

Sapienti sat-2

A work on the motion over given curve

Define the plane with various friction as a scalar field f(x, y), then the work of the friction depends on the trajectory over the plane. The work over length dl is equal dA = f(x, y)dl. Let as consider the line \mathcal{L} in a parametric form x(t), y(t), where t is a parameter and the element of the

length

$$dl = \sqrt{x'^2 + y'^2} dt.$$

The summary work over the given line is:

$$A = \int_{\mathcal{L}} f(x(t), y(t)) dl = \int_{\mathcal{L}} f(x(t), y(t)) \sqrt{x'^2 + y'^2} dt.$$

Such integral is called a line integral over scalar field.

Definitions and synonyms

One says f(x, y) is a scalar field on domain \mathcal{D} , if $\forall (x, y) \in \mathcal{D} \ \exists f(x, y) : (x, y) \to \mathbb{R}.$ Synonyms of the words "line integral"are the following

- path integral,
- curvilinear integral,
- contour integral,
- curve integral.

A center mass of the curve

Let's assume that it has linear density ρ . A formula for the center of mass of a planar curve:

$$\bar{x} = \frac{1}{M} \int_{\mathcal{L}} x \, \rho(x, y) dt$$

$$\bar{y} = \frac{1}{M} \int_{\mathcal{L}} y \, \rho(x, y) dl$$

where M is the mass of the wire and \mathcal{L} is the curve traced out by the wire.

Then the mass M of the wire is given by:

$$M=\int_{\mathcal{L}}\rho(x,y)\,dl.$$

Definition of a vector field

We will say a vector field is defined in the set (domain or a curve), if a vector-valued function is defined at any point of the set:

$$orall (x,y)\in \mathcal{D} \ \exists ec (F(x,y))=(F_1(x,t),F_2(x,y)).$$

A special kind of the vector field is the gradient field:

$$\vec{F}=\vec{\nabla}f(x,y),$$

where f(x, y) is smooth function of their variables. The physical examples of vector fields are

 A vector of velocity of a flow, for example a liquid or an air.

Vectors of gravitational force, magnetic force and electrostatic force.

A curl (rotor) of the vector flow

Let us consider two vector fields, which are the uniform expansion $\vec{F} = (x, y)$ and rotation $\vec{\Phi} = (-y, x)$. These flows are orthogonal:

$$(\vec{F},\vec{\Phi})=-xy+yx=0.$$

The uniform expansion flow is the gradient flow:

$$\vec{\nabla}\left(\frac{x^2}{2}+\frac{y^2}{2}\right)=(x,y)=\vec{F}.$$

Let us consider the cross product in 3D space:

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & 0 \end{vmatrix} = 0$$

A curl (rotor) of the vector flow

$$ec{
abla} imes ec{
abla} imes ec{
abla} = egin{pmatrix} ec{i} & ec{j} & ec{k} \ ec{\partial} & e$$

A rotor of the vector fields

$$ec{
abla} imes ec{
u} imes ec{
u} \equiv {f rot}(ec{
u}) \equiv {f curl}(ec{
u}) = \left| egin{array}{ccc} ec{i} & ec{j} & ec{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \
u_1 & ec{
u}_2 & ec{
u}_3 \end{array}
ight|.$$

Curves Vector fields The Green's theorem An area on a surface The Osrogradsky-Gauss theorem

Geometrical types of the vector fields

• Uniform expansion $\vec{F} = \vec{i}x + \vec{j}y$.

• Rotation $\vec{F} = -\vec{i}y + \vec{j}x$.

• Shear
$$\vec{F} = \vec{j}y$$

• Whirlpool
$$\vec{F} = \vec{i} \frac{-y}{x^2+y^2} + \vec{j} \frac{x}{x^2+y^2}$$
.

A definition of a divergence

$$(\vec{\nabla}, \vec{V}) \equiv \operatorname{div}(\vec{V}) = \frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y} + \frac{\partial V_3}{\partial z}.$$

Examples.

$$ec{F} = (x, y, 0) \Rightarrow \operatorname{div}(ec{F}) = 1 + 1 = 2;$$

 $ec{\Phi} = (-y, x, 0) \Rightarrow \operatorname{div}(ec{\Phi}) = 0.$

Curves Vector fields The Green's theorem An area on a surface The Osrogradsky-Gauss theorem

Theorem: $\operatorname{div} \operatorname{rot}(\vec{V}) = 0$

$$\operatorname{rot}(\vec{V}) = \vec{i} \left(\frac{\partial V_3}{\partial y} - \frac{\partial V_2}{\partial z} \right) - \vec{j} \left(\frac{\partial V_3}{\partial x} - \frac{\partial V_1}{\partial z} \right) + \vec{k} \left(\frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \right).$$
$$\operatorname{div}\operatorname{rot}(\vec{V}) = \frac{\partial}{\partial x} \left(\frac{\partial V_3}{\partial y} - \frac{\partial V_2}{\partial z} \right) - \frac{\partial}{\partial y} \left(\frac{\partial V_3}{\partial x} - \frac{\partial V_1}{\partial z} \right) + \frac{\partial}{\partial z} \left(\frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \right) = 0.$$

Curves Vector fields The Green's theorem An area on a surface The Osrogradsky-Gauss theorem

Sapienti sat-2

A work on the motion over given curve

Let's consider a vector field \vec{F} :

$$\vec{F}(x,y) = \vec{i}F_1(x,y) + \vec{j}F_2(x,y).$$

Such field may be considered as a liquid flow though a membrane of electromagnetic field around a wire.

$$\begin{split} \int_{\mathcal{L}} (\vec{F}, \vec{l}) dl &= \int_{\mathcal{L}} (F_1 \frac{dx}{dt} + F_2 \frac{dy}{dt}) dt; \\ \int_{\mathcal{L}} (\vec{F}, \vec{l}) dl &= \int_{\mathcal{L}} F_1 dx + F_2 dy; \end{split}$$

A line integral of differential

Let's consider the function F(x, y). A differential of this function is:

$$dF(x,y) = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy.$$

The integral over a curve \mathcal{L} : (x(t), y(t)) with starting point A

and final point \boldsymbol{B} :

$$\int_{(A,B)} \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy = \int_{(A,B)} \frac{\partial F}{\partial x} \frac{\partial x}{\partial t} dx + \frac{\partial F}{\partial y} \frac{\partial y}{\partial t} dy = \int_{T(A)}^{T(B)} \frac{\partial F}{\partial t} dt = F(B) - F(A).$$

A line integral of differential

Theorem

~

If
$$\exists F(x,y): U_1(x,y) = \frac{\partial F}{\partial x}$$
 and $U_2(x,y) = \frac{\partial F}{\partial y}$, then:

$$\int_{(A,B)} U_1(x,y) dx + U_2(x,y) dy = F(B) - F(A)$$

and the integral does not depend on the integration path.

Representations for the line integral

► The scalar parametric form:

$$I = \int_{\mathcal{L}} f(x(l), y(l)) dl.$$

The parametric scalar product form:

$$I = \int_{\mathcal{L}} (\vec{f}, \frac{d\vec{r}}{dl}) dl.$$

The differential scalar product form:

$$I=\int_{\mathcal{L}}(\vec{f},d\vec{r}).$$

$$I=\int_{\mathcal{L}}\vec{f_1}\,dx+f_2\,dy.$$

Curves Vector fields The Green's theorem An area on a surface The Osrogradsky-Gauss theorem

Green's theorem

Let \mathcal{L} be a simple closed curve in the plane that is piecewise smooth and oriented counterclockwise, and let \mathcal{D} be the region enclosed by \mathcal{L} . Let $\vec{F}(x, y) = (P(x, y), Q(x, y))$ be a vector field whose components have continuous partial derivatives on an open region containing \mathcal{D} . Then the line integral of \vec{F} around \mathcal{L} is equal to the double integral of the curl of \vec{F} over \mathcal{D} :

$$\oint_{\mathcal{L}} P(x,y) dx + Q(x,y) dy = \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) ds$$

where *ds* is the differential of area.

Green's theorem

In other words, the counterclockwise circulation of the vector field around the curve \mathcal{L} is equal to the net outward flux of the curl of the vector field through the region \mathcal{D} enclosed by \mathcal{L} . Let $\vec{V} = P\vec{i} + Q\vec{j}$ and $d\vec{r} = \vec{i}dx + \vec{j}dy + \vec{k}dz$, then

$$\oint_{\mathcal{L}} (ec{V}, dec{r}) = \iint_{\mathcal{D}} (\mathbf{rot}(ec{V}), ec{k}) ds$$

A proof of the Green's theorem

$$\iint_{\mathcal{D}} \frac{\partial P}{\partial y} \, ds = \int_{A}^{B} \int_{y_{-}(x)}^{y_{+}(x)} \frac{\partial P}{\partial y} \, dy \, dx = -\oint_{\mathcal{L}} P(x, y) \, dx,$$

$$\iint_{\mathcal{D}} \frac{\partial Q}{\partial x} \, ds = \int_{C}^{D} \int_{x_{L}(y)}^{x_{R}(y)} \frac{\partial Q}{\partial x} \, dy \, dx = \oint_{\mathcal{L}} Q(x, y) \, dy,$$

$$\Rightarrow \\ \oint_{\mathcal{L}} P(x, y) \, dx + Q(x, y) \, dy = \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, ds$$

An area of the set $\ensuremath{\mathcal{D}}$

$$S = \iint_{\mathcal{D}} dy \, dx = -\oint_{\mathcal{L}} y dx,$$
$$S = \iint_{\mathcal{D}} dy \, dx = \oint_{\mathcal{L}} x dy,$$
$$S = \iint_{\mathcal{D}} dy \, dx = \frac{1}{2} \oint_{\mathcal{L}} x \, dy - y \, dx.$$

Curves Vector fields The Green's theorem An area on a surface The Osrogradsky-Gauss theorem

A corollary of the Green's theorem

Let
$$\vec{F} = \vec{\nabla}f$$
, $f(x, y) : (x, y) \to \mathbb{R}$ then:
 $\oint_{\mathcal{L}} (\vec{F}, d\vec{r}) = 0.$

Proof.

$$\oint_{\mathcal{L}} (\vec{F}, d\vec{r}) = \oint_{\mathcal{L}} \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = \iint_{\mathcal{D}} \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right) ds.$$

Embedded 2D manifolds in 3-dimensional space

$\mathbf{x}(U) \subseteq M.$

An embedded manifold is a subset M of Euclidean space \mathbb{R}^3 that can be locally parameterized by a smooth function $\mathbf{x} : U \to \mathbb{R}^3$, where U is an open subset of \mathbb{R}^2 . In particular, for any point $\mathbf{p} \in M$, there exists a neighborhood Vof **p** in \mathbb{R}^3 and a smooth function $\mathbf{x} : U \to V \cap M$ such that \mathbf{x} is a homeomorphism between U and

Curves Vector fields The Green's theorem An area on a surface The Osrogradsky-Gauss theorem

An example of embedded 2D manifold

The parametric equation for a torus with major radius R and minor radius r is given by:

$$x = (R + r \cos \theta) \cos \phi$$
$$y = (R + r \cos \theta) \sin \phi$$
$$z = r \sin \theta$$

where $0 \le \theta \le 2\pi$ and $0 \le \phi \le 2\pi$ are the polar and azimuthal angles, respectively.

Orientable manifolds

An orientable

manifold is a regular manifold M that admits a consistent choice of orientation. More precisely, M is orientable if and only if there exists a continuous non-vanishing vector field \mathbf{v} on M such that for any two points \mathbf{p} , $\mathbf{q} \in M$, the parallel

transport of $\mathbf{v}(\mathbf{p})$ along any smooth path connecting \mathbf{p} and \mathbf{q} is equal to $\mathbf{v}(\mathbf{q})$. As a typical example one can image a sphere.

Non-orientable manifolds

A non-orientable manifold is a regular manifold M that does not admit a consistent choice of orientation. More precisely, Mis non-orientable if and only if there exists a continuous non-vanishing vector field \mathbf{v} on M such that for any two points \mathbf{p} , $\mathbf{q} \in M$, the parallel transport of $\mathbf{v}(\mathbf{p})$ along any

closed loop on M is equal to $-\mathbf{v}(\mathbf{p})$. A classic example of a non-orientable manifold is the Möbius strip.

A parametric definition of the M"obius strip

The Möbius strip can be parametrized by the following equations:

$$x(u, v) = \left(1 + \frac{v}{2}\cos\frac{u}{2}\right)\cos u$$
$$y(u, v) = \left(1 + \frac{v}{2}\cos\frac{u}{2}\right)\sin u$$
$$z(u, v) = \frac{v}{2}\sin\frac{u}{2}$$

where $0 \le u \le 2\pi$ and $-1 \le v \le 1$.

In these equations, the parameter u controls the orientation of the strip around its central axis, while the parameter v controls the width of the strip. The strip has a half-twist in it, which can be seen by observing that the *z*-coordinate changes sign as u goes from 0 to 2π .

A definitions of a surface using a vector approach

A parametric surface is a surface in three-dimensional space that is defined using a set of equations of the form:

$$\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$$

where u and v are parameters that vary over some domain, and \vec{i} , \vec{j} , and \vec{k} are the standard basis vectors in three-dimensional space.

A parametric definition of a surface using a coordinate approach

Alternatively, a parametric surface can be defined using a set of three equations of the form:

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v)$$

where u and v vary over some domain. These equations describe

how the x, y, and z coordinates of a point on the surface vary as the parameters u and v vary.

A tangent plane for given surface

Let S be a surface in \mathbb{R}^3 given by the equation z = f(x, y), where f is a differentiable function. The equation of the tangent plane is given by:

$$z = f(a, b) + \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b)$$

or, equivalently,

$$\mathbf{r}(x,y) = \langle x, y, f(a,b) \rangle + \langle \frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b), -1 \rangle \cdot \langle x-a, y-b, f(x,y) - f(a,b) \rangle = 0$$

An area of surfaces

The area of a small piece of the surface can be approximated using the formula for the area of a parallelogram:

 $dA = ||\vec{r_u} \times \vec{r_v}||dudv$

where $\vec{r_u}$ and $\vec{r_v}$ are tangent vectors to the surface, and du and dv are small increments in the u and v directions, respectively. To get the total area of the surface, we integrate this formula over the entire surface:

$$A = \iint_{S} ||\vec{r_u} \times \vec{r_v}|| du dv$$

where S is the surface we're interested in and the double integral is taken over a parametrization of the surface.

An integral over a surface

Integration on a surface is the process of calculating the integral of a function f(x, y, z) over a two-dimensional surface S in three-dimensional space. The surface S can be defined using either a set of equations or a parametrization, and the integral is typically computed using a double integral over a parametrization of the surface:

$$\int \int_{S} f(x, y, z) \, dS$$

where dS represents the area element on the surface S.

An integral over a surface for a vector field

Let S be a smooth oriented surface in \mathbb{R}^3 with unit normal vector field \hat{n} . Let $\mathbf{F}(x, y, z) = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$ be a continuous vector field defined on a region containing S.

Then the flux of **F** across *S* is given by:

 $\iint_{C} \mathbf{F} \cdot \vec{n} \, dS$

where \vec{n} is the unit normal vector to S, and dS is the differential surface area element on S

A geometric interpretation of surface integral

Let $f(\mathbf{r})$ be a scalar field and $\mathbf{F}(\mathbf{r})$ be a vector field defined in the region of 3D space containing the surface S. Let S_{Δ} be a collection of small patches or elements of the surface S, such that the union of

all the patches covers the entire surface. Each patch S_i has an area ΔS_i , and is centered at a point \mathbf{r}_i on the surface. The surface integral of f over S can be approximated by a sum of integrals over each small patch, weighted by the area of the patch:

$$\iint_{S} f(\mathbf{r}) \, dS = \lim_{\Delta S_i \to 0} \sum_{i} f(\mathbf{r}_i) \Delta S_i$$

A geometric interpretation of surface integral

Similarly, the surface integral of the vector field \mathbf{F} over S can be approximated by a sum of integrals over each small patch, weighted by the normal vector to the patch:

$$\iint_{S} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{S} \approx \sum_{i} \mathbf{F}(\mathbf{r}_{i}) \cdot \mathbf{n}_{i} \Delta S_{i}$$

where \mathbf{n}_i is the outward-pointing normal vector to the patch S_i .

$$\iint_{S} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{S} = \lim_{\Delta S_i \to 0} \sum_{i} \mathbf{F}(\mathbf{r}_i) \cdot \mathbf{n}_i \Delta S_i$$

A surface integral as an integral over projections

$$\iint_{S} \mathbf{F} \cdot \vec{n} \, dS = \iint_{S} (F_1(x, y, z)n_1 + F_2(x, y, z)n_2 + F_3(x, y, z)n_3) \, dS.$$

The projection of the infinitesimal area dS on coordinate planes can be represented as follows: $n_1 dS = dy dz$, $n_2 dS = dz dx$, $n_3 dS = dx dy$. As a result one obtains: $\iint_S \mathbf{F} \cdot \vec{n} dS = \iint_S F_1(x, y, z) dy dz + F_2(x, y, z) dz dx + F_3(x, y, z) dx dy.$

The formula written in the terms of the cross product

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (\mathbf{F}(\mathbf{r}(u, v)) \cdot \left(\frac{\partial \mathbf{r}}{\partial u}(u, v)\right) \times \frac{\partial \mathbf{r}}{\partial v}(u, v) du dv$$

In this formula, **F** is the vector field, $\mathbf{r}(u, v)$ is the parameterization of the surface *S*, and *D* is the domain in the (u, v)-plane over which the surface is parameterized.

$$d\mathbf{S} = \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \, du \, dv.$$

An example of the surface integral

Compute the surface integral of the vector field $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$ over the part of the surface of the sphere $x^2 + y^2 + z^2 = 4$ that lies in the first octant. One possible parameterization of the surface of the sphere is given by:

 $\mathbf{r}(\theta,\phi) = (2\sin\theta\cos\phi)\mathbf{i} + (2\sin\theta\sin\phi)\mathbf{j} + (2\cos\theta)\mathbf{k}$

where $0 \le \theta \le \frac{\pi}{2}$ and $0 \le \phi \le \frac{\pi}{2}$ are the polar and azimuthal angles, respectively, that specify the location of each point on the surface in the first octant.

An example of the surface integral

To evaluate the surface integral, we need to compute the dot product of the vector field \mathbf{F} with the area element $d\mathbf{S}$ at each point on the surface, and then integrate over the surface using the appropriate area element:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \mathbf{F}(\mathbf{r}(\theta, \phi)) \cdot (\frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial \phi}) \, d\theta \, d\phi$$

where $\frac{\partial \mathbf{r}}{\partial \theta}$ and $\frac{\partial \mathbf{r}}{\partial \phi}$ are the partial derivatives of $\mathbf{r}(\theta, \phi)$ with respect to θ and ϕ , respectively, and \times denotes the cross product.

An example of the surface integral

Using the parameterization $\mathbf{r}(\theta, \phi)$ and the definition of the vector field **F**, we can compute:

$$\frac{\partial \mathbf{r}}{\partial \theta} = 2\cos(\theta)\cos(\phi)\mathbf{i} + 2\cos(\theta)\sin(\phi)\mathbf{j} - 2\sin(\theta)\mathbf{k},$$
$$\frac{\partial \mathbf{r}}{\partial \phi} = -2\sin(\theta)\sin(\phi)\mathbf{i} + 2\sin(\theta)\cos(\phi)\mathbf{j} + 0\mathbf{k},$$
$$\frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial \phi} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2\cos(\theta)\cos(\phi) & 2\cos(\theta)\sin(\phi) & -2\sin(\theta)\mathbf{k} \\ -2\sin(\theta)\sin(\phi) & 2\sin(\theta)\cos(\phi) & 0 \end{vmatrix} = 4\sin^2\theta\cos\phi\mathbf{i} + 4\sin^2\theta\sin\phi\mathbf{j} + 2\sin(2\theta)\mathbf{k},$$
$$\mathbf{F}(\mathbf{r}(\theta, \phi)) = 4\sin^2\theta\cos^2\phi\mathbf{i} + 4\sin^2\theta\sin^2\phi\mathbf{j} + 4\cos^2\theta\mathbf{k}.$$

Curves

An example of the surface integral

Substituting these expressions into the surface integral, we get:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} (16\sin(\theta)^{4}\sin(\phi)^{3} + 4\cos(\theta)^{2} \left(4\cos(\theta)\sin(\theta)\sin(\phi)^{2} + 4\cos(\theta)\sin(\theta)\cos(\phi)^{2}\right) + 16\sin(\theta)^{4}\cos(\phi)^{3}\right) d\theta d\phi = d\theta$$

$$\int_{0}^{-7} (3\pi \sin{(\phi)^{3}} + 4\sin{(\phi)^{2}} + 3\pi \cos{(\phi)^{3}} + 4\cos{(\phi)^{2}})d\phi = 6\pi$$

The Ostrogradsky-Gauss therem

For a smooth vector field $\mathbf{F}(\mathbf{r})$ defined in a region of 3D space containing a closed surface S that encloses a volume V, we have:

$$\iiint_V (\nabla \cdot \mathbf{F}) \, dV = \iint_S \mathbf{F} \cdot d\mathbf{S}$$

In this formula, V is a closed volume, with boundary surface S, and **F** is a vector field.

$$\iiint_V (\nabla \cdot \mathbf{F}) \, dV = \iiint_V \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} dx \, dy \, dz$$

A proof of the Ostrogradsky-Gauss theorem

Puc.: The integration over alone $x_{-}(y, z) < x < x_{+}(y, z)$ looks like changing the body onto **a bunch of spaghetti**. Here the bunch of spaghetti are noted as a set of green intervals.

Let's consider the first term:

$$\iiint_{V} \frac{\partial F_1}{\partial x} dx \, dy \, dz = \iint_{\partial V} \int_{x_-(y,z)}^{x_+(y,z)} \frac{\partial F_1}{\partial x} dx \, dy \, dz = \iint_{\partial V^+} F_1(x_+, y, z) dy \, dz - \iint_{\partial V^-} F_1(x_-, y, z) dy \, dz = \iint_{\partial V} F_1(x, y, z) dy \, dz.$$

A proof of the Ostrogradsky-Gauss theorem

Similar calculations for the rest parts of the integral give a result:

$$\iiint_{V} (\nabla \cdot \mathbf{F}) \, dV$$
$$= \iint_{\partial V} F_{1}(x, y, z) \, dy \, dz + F_{2}(x, y, z) \, dz \, dx + F_{3}(x, y, z) \, dx \, dy = \iint_{\partial V} \mathbf{F} \cdot d\mathbf{S}.$$

Curves Vector fields The Green's theorem An area on a surface The Osrogradsky-Gauss theorem

Ostrogradsky-Gauss theorem. An example

Compute integral $\iint_{\partial C} x^2 dy \, dz + y^2 dz \, dx + z^2 dy \, dx$, where ∂C is a surface of cone $\frac{x^2}{a^2} + \frac{y^2}{a^2} = \frac{z^2}{b^2}$ as 0 < z < b. Let's change the variables $x = \frac{a}{b}r\cos(\alpha), y = \frac{a}{b}r\sin(\alpha), z = z$. Then one gets:

$$\iint_{\partial C} x^2 dy \, dz + y^2 dz \, dx + z^2 dy \, dx =$$
$$\iint_{C} (2x + 2y + 2z) dx \, dy \, dz =$$
$$\int_{0}^{b} \int_{0}^{2\pi} \int_{0}^{z} (2r\cos(\phi) + 2r\sin(\phi) + 2z) \frac{a^2}{b^2} r \, dr \, d\phi \, dz =$$
$$4\pi \frac{a^2}{b^2} \int_{0}^{b} \int_{0}^{z} rz dr \, dz = \frac{\pi}{2} a^2 b^2.$$

A physical interpretation of the Ostrogradsky-Gauss theorem

Consider a fluid flowing through a closed surface S in three-dimensional space. The velocity of the fluid at a point (x, y, z) is given by the vector field $\mathbf{v}(x, y, z) = v_x(x, y, z)\mathbf{i} + v_y(x, y, z)\mathbf{j} + v_z(x, y, z)\mathbf{k}$. The divergence of this vector field represents the rate at which fluid is flowing out of a given volume:

$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

A physical interpretation of the Ostrogradsky-Gauss theorem

The divergence theorem states that the total amount of fluid flowing out of the closed surface S is equal to the integral of the divergence of the velocity field over the volume enclosed by the surface:

$$\iint_{\mathcal{S}} \mathbf{v} \cdot d\mathbf{S} = \iiint_{V} (\nabla \cdot \mathbf{v}) \, dV$$

where $d\mathbf{S}$ is the outward-pointing differential surface element on S and dV is the differential volume element inside the surface.

The rotor (also known as the curl) of a vector field \mathbf{F} at a point is a measure of how much the vector field "curls" or rotates around that point. One way to express the rotor using the Green's formula is as follows:

$$\mathsf{rot}(\mathsf{F})(\mathsf{r}) = \lim_{A o 0} \frac{1}{A} \oint_C \mathsf{F}(\mathsf{r}') \cdot d\mathsf{r}'$$

where \mathbf{r} is the point of interest, *C* is a small closed curve centered at \mathbf{r} , and *A* is the area enclosed by *C*.

This formula tells us that the rotor of **F** at a point **r** is equal to the limit of the circulation of **F** around a small closed curve C centered at **r**, as the area enclosed by C shrinks to zero. To see why this formula is true, we can use the Green's formula, which relates the circulation of a vector field around a closed curve to the integral of the rotor of the vector field over the area enclosed by the curve:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_A \operatorname{rot}(\mathbf{F}) \cdot d\mathbf{S}$$

where A is the area enclosed by the closed curve C, and $d\mathbf{S}$ is the outward-pointing differential surface element on A.

If we divide both sides of this equation by the area A and take the limit as $A \rightarrow 0$, we obtain:

$$\lim_{A \to 0} \frac{1}{A} \oint_{C} \mathbf{F} \cdot d\mathbf{r} = \lim_{A \to 0} \frac{1}{A} \iint_{A} \operatorname{rot}(\mathbf{F}) \cdot d\mathbf{S}$$

The left-hand side of this equation is the circulation of \mathbf{F} around a small closed curve *C* centered at \mathbf{r} , and the right-hand side is the average value of the rotor of \mathbf{F} over the area enclosed by *C*.

Therefore, as A shrinks to zero, the right-hand side approaches the value of the rotor of **F** at **r**, and we obtain the formula:

$$\operatorname{rot}(\mathbf{F})(\mathbf{r}) = \lim_{A \to 0} \frac{1}{A} \oint_{C} \mathbf{F}(\mathbf{r}') \cdot d\mathbf{r}'$$

This formula tells us that the rotor of \mathbf{F} at a point \mathbf{r} is equal to the limit of the circulation of \mathbf{F} around a small closed curve C centered at \mathbf{r} , as the area enclosed by C shrinks to zero.

A divergence as a limit of a flow through an envelope

Let's consider a three-dimensional vector field $\mathbf{F}(\mathbf{r}) = F_x(\mathbf{r})\mathbf{i} + F_y(\mathbf{r})\mathbf{j} + F_z(\mathbf{r})\mathbf{k}$ and a small closed envelope \mathcal{E} centered at a point \mathbf{r}_0 in space. We can think of the envelope \mathcal{E} as a small smooth surface enveloping a volume ϵ . The net flow rate of \mathbf{F} through the closed envelope \mathcal{E} is given

by the flux integral:

$$\mathsf{Flow} = \iint_{\partial \mathcal{E}} \mathbf{F} \cdot d\mathbf{S}$$

where $\partial \mathcal{E}$ is the boundary surface of the envelope \mathcal{E} and $d\mathbf{S}$ is the outward-pointing differential surface element on $\partial \mathcal{E}$.

A divergence as a limit of a flow through an envelope

By the divergence theorem, the net flow rate of **F** through the closed envelope \mathcal{E} is equal to the integral of the divergence of **F** over the volume enclosed by the envelope:

$$\iint_{\partial \mathcal{E}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\mathcal{E}} \nabla \cdot \mathbf{F} \, dV$$

where dV is the differential volume element inside the envelope \mathcal{E} .

A divergence as a limit of a flow through an envelope

As the size of the envelope \mathcal{E} shrinks to zero, we can define the divergence of **F** at \mathbf{r}_0 as the limit of the net flow rate through small closed envelopes centered at \mathbf{r}_0 , as the size of the envelopes shrinks to zero:

$$\mathsf{div}(\mathbf{F})(\mathbf{r}_0) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \iiint_{\mathcal{E}} \nabla \cdot \mathbf{F} \, dV = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \iint_{\partial \mathcal{E}} \mathbf{F} \cdot d\mathbf{S}$$

where \mathcal{E} is a small closed envelope centered at \mathbf{r}_0 and enclosing a volume ϵ .