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A parametric form of a curve

Let us consider a curve on a plane. Assume that in the
Cartesian coordinates can be written as x = x(t) and
y = y(t).

~v = (vx , vy )

A(x(t0), y(t0))

B(x(t1), y(t1))
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A length of a curve

The components of tangent vector at given point can be
defined as the derivatives with respect to t vx = ẋ , vy = ẏ .
The length of the tangent vector:

V =
√
v 2
x + v 2

y .

The length of the path for the curve of the point over the
interval of the parameter t ∈ [t0, t1]:

S =

∫ t1

t0

√
ẋ2 + ẏ 2dt.
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A curvature

The second derivative at the point:

ax = v̇x = ẍ , ay = v̇y = ÿ .

Theorem
If
√
v 2
x + v 2

y = const, then the vector of the second derivative
always is orthogonal to the tangent vector.
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A curvature

Proof. Let us differentiate the scalar product:

~an
~v

~v
~an

~v

d
dt

(~v , ~v) = 0,(
d
dt
~v , ~v
)

+
(
~v , d

dt
~v
)

= 0

2
(

d
dt
~v , ~v
)

= 0

(~a, ~v) = 0.
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A first derivative and tangent vector for the circle

Let us consider the circle:

x = R cos(ωt), y = R sin(ωt).

The tangent vector is:

vx = −Rω sin(ωt), vy = Rω cos(ωt).

The formula for the length of the tangent line looks like:

V =
√
R2ω2 sin2(ωt) + R2ω2 cos2(ωt) = Rω.
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Second derivative for the circle

The second derivative is defined the following formulas:

ax = −Rω2 cos(ωt), ay = −Rω2 sin(ωt).

and

|an| =
√

a2
x + a2

y = Rω2 =
V 2

R
.

This vector is orthogonal with respect to the tangent one.
Therefore one obtains a normal vector.

1

R
=
|an|
V 2

.

The quantity ρ = 1/R is called a curvature.
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Second derivative in general case

~aT

~a
~an

The second derivative
might be represented as
a sum two orthogonal vectors
as the tangent direction
and the normal one.
The value of the tangent

content of the second derivative can be obtained as follows:

|aT | =
(~a, ~v)√

(~v , ~v)
.

The projection of the second vector of the tangent line can be
represented as follows:

~aT =
(~a, ~v)

(~v , ~v)
~v =

axvx + ayvy
v 2
x + v 2

y

(vx~i + vy~j).
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Normal vector
The normal vector can be represented as:

~an = ~a − ~aT .

The same formula in the coordinate form is follows:

~an =
1

v 2
x + v 2

y

(ax(v 2
x + v 2

y )~i + ay (v 2
x + v 2

y )~j −

(axvx + ayvy )vx~i − (axvx + ayvy )vy~j) =

(axvy − ayvx)

v 2
x + v 2

y

(vy~i − vx~j)

The length of the normal vector:

|an| =
√

(a, a)− (aT , aT ) =
|axvy − ayvx |

|~v |
.
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The curvature in a general case

The formula for curvature of the curve:

ρ =
|an|

(~v , ~v)
=

√
(a, a)− (aT , aT )

(~v , ~v)
=
|axvy − ayvx |

(~v , ~v)3/2
=
|~a × ~v |

(~v , ~v)3/2
.
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General formulas

The radius-vector for the trajectory is

~r = (x(t), y(t), z(t)).

The tangent vector to the curve is following:

~v =
d

dt
~r = (ẋ , ẏ , ż).

The second derivative is:

~a =
d2

dt2
~r = (ẍ , ÿ , z̈).

Curves Vector fields The Green’s theorem An area on a surface The Osrogradsky-Gauss theorem



Sapienti sat-2

The vector of the second derivatives in 3D

The tangent projection of the vector of a second derivative:

~aT =
(~a, ~v)

(~v , ~v)
~v =

axvx + ayvy + azvz
v 2
x + v 2

y + v 2
z

(vx~i + vy~j + vz~k).

The normal component of the second derivative vector:

~an = ~a − ~aT .

The normal and tangent vectors define the osculating plane.
Define a unit vectors ~u = ~v√

(~v ,~v)
and ~n = ~an√

(~an,~an)
. The vector

~b = ~u × ~n is called binormal. The vectors ~u, ~n, ~b define the
orthogonal system of the vectors connected with the curve.
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A torsion of the curve
Torsion is a derivative of the angle of rotation of osculating
plane with respect to changing the length of the curve.

~v

~an
~b

~v

~an~b

The normal vector to the osculation plane:

~b = ~v × ~a.

The formula for the torsion has the form:

τ = |~̇b|dt
dl
.
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A work on the motion over given curve
Define the plane with various
friction as a scalar field f (x , y),
then the work of the friction depends
on the trajectory over the plane.
The work over
length dl is equal dA = f (x , y)dl .
Let as consider the line L in
a parametric form x(t), y(t), where t
is a parameter and the element of the

length
dl =

√
x ′2 + y ′2dt.

The summary work over the given line is:

A =

∫
L
f (x(t), y(t))dl =

∫
L
f (x(t), y(t))

√
x ′2 + y ′2dt.

Such integral is called a line integral over scalar field.
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Definitions and synonyms

One says f (x , y) is a scalar field on domain D , if
∀(x , y) ∈ D ∃f (x , y) : (x , y)→ R.
Synonyms of the words "line integral"are the following
I path integral,
I curvilinear integral,
I contour integral,
I curve integral.
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A center mass of the curve
Let’s assume that it has linear density ρ.
A formula
for the center of mass of a planar curve:

x̄ =
1

M

∫
L
x ρ(x , y)dl

ȳ =
1

M

∫
L
y ρ(x , y)dl

where M is the mass of the wire and L is the curve traced out
by the wire.
Then the mass M of the wire is given by:

M =

∫
L
ρ(x , y) dl .
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Definition of a vector field
We will say a vector field is defined in the set (domain or a
curve), if a vector-valued function is defined at any point of
the set:

∀(x , y) ∈ D ∃~(F (x , y)) = (F1(x , t),F2(x , y)).

A special kind of the vector field is the gradient field:

~F = ~∇f (x , y),

where f (x , y) is smooth function of their variables.
The physical examples of vector fields are
I A vector of velocity of a flow, for example a liquid or an

air.
I Vectors of gravitational force, magnetic force and

electrostatic force.
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A curl (rotor) of the vector flow
Let us consider two vector fields, which are the uniform
expansion ~F = (x , y) and rotation ~Φ = (−y , x).
These flows are orthogonal:

(~F , ~Φ) = −xy + yx = 0.

The uniform expansion flow is the gradient flow:

~∇
(
x2

2
+

y 2

2

)
= (x , y) = ~F .

Let us consider the cross product in 3D space:

~∇× ~F =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

x y 0

∣∣∣∣∣∣ = 0
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A curl (rotor) of the vector flow

~∇× ~Φ =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

−y x 0

∣∣∣∣∣∣ = ~k

A rotor of the vector fields

~∇× ~V ≡ rot( ~V ) ≡ curl( ~V ) =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

V1 V2 V3

∣∣∣∣∣∣ .
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Geometrical types of the vector fields

I Uniform expansion ~F = ~ix + ~jy .
I Rotation ~F = −~iy + ~jx .
I Shear ~F = ~jy .
I Whirlpool ~F = ~i −y

x2+y2 + ~j x
x2+y2 .
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A definition of a divergence

(~∇, ~V ) ≡ div( ~V ) =
∂V1

∂x
+
∂V2

∂y
+
∂V3

∂z
.

Examples.

~F = (x , y , 0) ⇒ div(~F ) = 1 + 1 = 2;

~Φ = (−y , x , 0) ⇒ div(~Φ) = 0.
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Theorem: div rot(~V ) = 0

rot( ~V ) =~i

(
∂V3

∂y
− ∂V2

∂z

)
− ~j
(
∂V3

∂x
− ∂V1

∂z

)
+~k

(
∂V2

∂x
− ∂V1

∂y

)
.

div rot( ~V ) =
∂

∂x

(
∂V3

∂y
− ∂V2

∂z

)
− ∂

∂y

(
∂V3

∂x
− ∂V1

∂z

)
+
∂

∂z

(
∂V2

∂x
− ∂V1

∂y

)
= 0.

Curves Vector fields The Green’s theorem An area on a surface The Osrogradsky-Gauss theorem



Sapienti sat-2

A work on the motion over given curve

Let’s consider a vector field ~F :

~F (x , y) = ~i F1(x , y) + ~j F2(x , y).

Such field may be considered as
a liquid flow though a membrane of
electromagnetic field around a wire.

∫
L

(~F , ~l)dl =

∫
L

(F1
dx

dt
+ F2

dy

dt
)dt;∫

L
(~F , ~l)dl =

∫
L
F1dx + F2dy ;
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A line integral of differential

Let’s consider the function F (x , y).
A differential of this function is:

dF (x , y) =
∂F

∂x
dx +

∂F

∂y
dy .

The integral over a curve L:
(x(t), y(t)) with starting point A

and final point B :∫
(A,B)

∂F

∂x
dx +

∂F

∂y
dy =

∫
(A,B)

∂F

∂x

∂x

∂t
dx +

∂F

∂y

∂y

∂t
dy =∫ T (B)

T (A)

∂F

∂t
dt = F (B)− F (A).
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A line integral of differential

Theorem
If ∃F (x , y): U1(x , y) = ∂F

∂x
and U2(x , y) = ∂F

∂y
, then:∫

(A,B)

U1(x , y)dx + U2(x , y)dy = F (B)− F (A)

and the integral does not depend on the integration path.
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Representations for the line integral
I The scalar parametric form:

I =

∫
L
f (x(l), y(l))dl .

I The parametric scalar product form:

I =

∫
L
(~f ,

d~r

dl
)dl .

I The differential scalar product form:

I =

∫
L
(~f , d~r).

I The differential scalar form:

I =

∫
L
~f1 dx + f2 dy .
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Green’s theorem

Let L be a simple closed curve in the plane that is piecewise
smooth and oriented counterclockwise, and let D be the
region enclosed by L. Let ~F (x , y) = (P(x , y),Q(x , y)) be a
vector field whose components have continuous partial
derivatives on an open region containing D. Then the line
integral of ~F around L is equal to the double integral of the
curl of ~F over D:∮

L
P(x , y)dx + Q(x , y)dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
ds

where ds is the differential of area.
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Green’s theorem

In other words, the counterclockwise circulation of the vector
field around the curve L is equal to the net outward flux of the
curl of the vector field through the region D enclosed by L.
Let ~V = P~i + Q~j and d~r = ~idx + ~jdy + ~kdz , then

∮
L

( ~V , d~r) =

∫∫
D

(rot( ~V ), ~k)ds.
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A proof of the Green’s theorem

∫∫
D

∂P

∂y
ds =

∫ B

A

∫ y+(x)

y−(x)

∂P

∂y
dy dx =

−
∮
L
P(x , y)dx ,

∫∫
D

∂Q

∂x
ds =

∫ D

C

∫ xR(y)

xL(y)

∂Q

∂x
dy dx =

∮
L
Q(x , y)dy ,

⇒∮
L
P(x , y)dx + Q(x , y)dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
ds
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An area of the set D

S =

∫∫
D
dy dx = −

∮
L
ydx ,

S =

∫∫
D
dy dx =

∮
L
xdy ,

S =

∫∫
D
dy dx =

1

2

∮
L
x dy − y dx .

Curves Vector fields The Green’s theorem An area on a surface The Osrogradsky-Gauss theorem



Sapienti sat-2

A corollary of the Green’s theorem

Let ~F = ~∇f , f (x , y) : (x , y)→ R then:∮
L

(~F , d~r) = 0.

Proof.∮
L

(~F , d~r) =

∮
L

∂f

∂x
dx +

∂f

∂y
dy =

∫∫
D

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
ds.
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Embedded 2D manifolds in 3-dimensional space

An embedded manifold is
a subset M of Euclidean space R3

that can be locally parameterized
by a smooth function x : U → R3,
where U is an open subset of R2.
In particular, for any point p ∈ M ,
there exists a neighborhood V
of p in R3 and a smooth function
x : U → V ∩M such that x is
a homeomorphism between U and

x(U) ⊆ M .
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An example of embedded 2D manifold

The parametric equation
for a torus with major radius
R and minor radius r is given by:

x = (R + r cos θ) cosφ

y = (R + r cos θ) sinφ

z = r sin θ

where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ 2π
are the polar and azimuthal angles, respectively.

Curves Vector fields The Green’s theorem An area on a surface The Osrogradsky-Gauss theorem



Sapienti sat-2

Orientable manifolds

An orientable
manifold is a regular manifold
M that admits a consistent choice
of orientation. More precisely, M is
orientable if and only if there exists
a continuous non-vanishing vector
field v on M such that for any
two points p, q ∈ M , the parallel

transport of v(p) along any smooth path connecting p and q
is equal to v(q).
As a typical example one can image a sphere.
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Non-orientable manifolds

A non-orientable manifold
is a regular manifold M that
does not admit a consistent choice
of orientation. More precisely, M
is non-orientable if and only if there
exists a continuous non-vanishing
vector field v on M such that
for any two points p, q ∈ M , the
parallel transport of v(p) along any

closed loop on M is equal to −v(p). A classic example of a
non-orientable manifold is the Möbius strip.
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A parametric definition of the M"obius strip
The Möbius strip can be parametrized by the following
equations:

x(u, v) =
(

1 +
v

2
cos

u

2

)
cos u

y(u, v) =
(

1 +
v

2
cos

u

2

)
sin u

z(u, v) =
v

2
sin

u

2

where 0 ≤ u ≤ 2π and −1 ≤ v ≤ 1.
In these equations, the parameter u controls the orientation of
the strip around its central axis, while the parameter v
controls the width of the strip. The strip has a half-twist in it,
which can be seen by observing that the z-coordinate changes
sign as u goes from 0 to 2π.
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A definitions of a surface using a vector approach

A parametric surface
is a surface in three-dimensional
space that is defined using
a set of equations of the form:

~r(u, v) = x(u, v)~i+y(u, v)~j+z(u, v)~k

where u and v are parameters that vary over some domain,
and ~i , ~j , and ~k are the standard basis vectors in
three-dimensional space.
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A parametric definition of a surface using a
coordinate approach

Alternatively, a parametric
surface can be defined using a
set of three equations of the form:

x = x(u, v), y = y(u, v), z = z(u, v)

where u and v vary over some
domain. These equations describe

how the x , y , and z coordinates of a point on the surface vary
as the parameters u and v vary.
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A tangent plane for given surface

Let S be a surface in R3 given by the equation z = f (x , y),
where f is a differentiable function.
The equation of the tangent plane is given by:

z = f (a, b) +
∂f

∂x
(a, b)(x − a) +

∂f

∂y
(a, b)(y − b)

or, equivalently,

r(x , y) = 〈x , y , f (a, b)〉+

〈∂f
∂x

(a, b),
∂f

∂y
(a, b),−1〉 · 〈x − a, y − b, f (x , y)− f (a, b)〉 = 0
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An area of surfaces
The area of a small piece of the surface can be approximated
using the formula for the area of a parallelogram:

dA = ||~ru × ~rv ||dudv

where ~ru and ~rv are tangent vectors to the surface, and du and
dv are small increments in the u and v directions, respectively.
To get the total area of the surface, we integrate this formula
over the entire surface:

A =

∫∫
S

||~ru × ~rv ||dudv

where S is the surface we’re interested in and the double
integral is taken over a parametrization of the surface.
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An integral over a surface

Integration on a surface is the process of calculating the
integral of a function f (x , y , z) over a two-dimensional surface
S in three-dimensional space. The surface S can be defined
using either a set of equations or a parametrization, and the
integral is typically computed using a double integral over a
parametrization of the surface:∫ ∫

S

f (x , y , z) dS

where dS represents the area element on the surface S .
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An integral over a surface for a vector field

Let S be a smooth oriented surface
in R3 with unit normal vector field n̂. Let

F(x , y , z) = 〈P(x , y , z),Q(x , y , z),R(x , y , z)〉

be a continuous vector
field defined on a region containing S .
Then the flux of F across S is given by:∫∫

S

F · ~n dS

where ~n is the unit normal vector to S , and dS is the
differential surface area element on S .
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A geometric interpretation of surface integral

Let f (r) be a scalar field and
F(r) be a vector field defined in the
region of 3D space containing the
surface S . Let S∆ be a collection
of small patches or elements of the
surface S , such that the union of

all the patches covers the entire surface. Each patch Si has an
area ∆Si , and is centered at a point ri on the surface.
The surface integral of f over S can be approximated by a
sum of integrals over each small patch, weighted by the area
of the patch: ∫∫

S

f (r) dS = lim
∆Si→0

∑
i

f (ri)∆Si
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A geometric interpretation of surface integral

Similarly, the surface integral of the vector field F over S can
be approximated by a sum of integrals over each small patch,
weighted by the normal vector to the patch:∫∫

S

F(r) · dS ≈
∑
i

F(ri) · ni∆Si

where ni is the outward-pointing normal vector to the patch Si .∫∫
S

F(r) · dS = lim
∆Si→0

∑
i

F(ri) · ni∆Si
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A surface integral as an integral over projections

∫∫
S

F · ~n dS =

∫∫
S

(F1(x , y , z)n1 +

F2(x , y , z)n2 + F3(x , y , z)n3) dS .

The projection of the
infinitesimal area dS on coordinate
planes can be represented
as follows: n1dS = dy dz ,
n2dS = dz dx , n3dS = dx dy .
As a result one obtains:∫∫

S
F · ~n dS =

∫∫
S
F1(x , y , z)dy dz +

F2(x , y , z)dz dx + F3(x , y , z)dx dy .
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The formula written in the terms of the cross
product

∫∫
S

F · dS =

∫∫
D

(F(r(u, v)) ·
(
∂r

∂u
(u, v))× ∂r

∂v
(u, v)

)
du dv

In this formula, F is the vector field, r(u, v) is the
parameterization of the surface S , and D is the domain in the
(u, v)-plane over which the surface is parameterized.

dS =
∂r

∂u
× ∂r

∂v
du dv .
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An example of the surface integral

Compute the surface integral of the vector field
F(x , y , z) = x2i + y 2j + z2k over the part of the surface of the
sphere x2 + y 2 + z2 = 4 that lies in the first octant.
One possible parameterization of the surface of the sphere is
given by:

r(θ, φ) = (2 sin θ cosφ)i + (2 sin θ sinφ)j + (2 cos θ)k

where 0 ≤ θ ≤ π
2
and 0 ≤ φ ≤ π

2
are the polar and azimuthal

angles, respectively, that specify the location of each point on
the surface in the first octant.
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An example of the surface integral

To evaluate the surface integral, we need to compute the dot
product of the vector field F with the area element dS at each
point on the surface, and then integrate over the surface using
the appropriate area element:∫∫

S

F · dS =

∫ π
2

0

∫ π
2

0

F(r(θ, φ)) · (∂r
∂θ
× ∂r

∂φ
) dθ dφ

where ∂r
∂θ

and ∂r
∂φ

are the partial derivatives of r(θ, φ) with
respect to θ and φ, respectively, and × denotes the cross
product.
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An example of the surface integral

Using the parameterization r(θ, φ) and the definition of the
vector field F, we can compute:

∂r

∂θ
= 2 cos(θ) cos(φ)i + 2 cos(θ) sin(φ)j− 2 sin(θ)k,

∂r

∂φ
= −2 sin(θ) sin(φ)i + 2 sin(θ) cos(φ)j + 0k,

∂r

∂θ
× ∂r

∂φ
=

∣∣∣∣∣∣
i j k

2 cos(θ) cos(φ) 2 cos(θ) sin(φ) −2 sin(θ)k
−2 sin(θ) sin(φ) 2 sin(θ) cos(φ) 0

∣∣∣∣∣∣ =

4 sin2 θ cosφi + 4 sin2 θ sinφj + 2 sin(2θ)k,

F(r(θ, φ)) = 4 sin2 θ cos2 φi + 4 sin2 θ sin2 φj + 4 cos2 θk.
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An example of the surface integral

Substituting these expressions into the surface integral, we get:

∫∫
S

F · dS =

∫ π
2

0

∫ π
2

0

(16sin (θ)4sin (φ)3 +

4cos (θ)2
(

4 cos (θ) sin (θ)sin (φ)2 + 4 cos (θ) sin (θ)cos (φ)2
)

+

16sin (θ)4cos (φ)3) dθ dφ =∫ π/2

0

(3πsin (φ)3 + 4sin (φ)2 + 3πcos (φ)3 + 4cos (φ)2)dφ = 6π
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The Ostrogradsky-Gauss therem

For a smooth vector field F(r) defined in a region of 3D space
containing a closed surface S that encloses a volume V , we
have: ∫∫∫

V

(∇ · F) dV =

∫∫
S

F · dS

In this formula, V is a closed volume, with boundary surface
S , and F is a vector field.

∫∫∫
V

(∇ · F) dV =

∫∫∫
V

∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
dx dy dz
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A proof of the Ostrogradsky-Gauss theorem

Рис.: The integration over alone x−(y , z) < x < x+(y , z) looks like
changing the body onto a bunch of spaghetti. Here the bunch of
spaghetti are noted as a set of green intervals.

Let’s consider the first term:∫∫∫
V

∂F1

∂x
dx dy dz =

∫∫
∂V

∫ x+(y ,z)

x−(y ,z)

∂F1

∂x
dx dy dz =∫∫

∂V+

F1(x+, y , z)dy dz −
∫∫

∂V−
F1(x−, y , z)dy dz =

∫∫
∂V

F1(x , y , z)dy dz .
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A proof of the Ostrogradsky-Gauss theorem

Similar calculations for the rest parts of the integral give a
result: ∫∫∫

V

(∇ · F) dV

=

∫∫
∂V

F1(x , y , z)dy dz +

F2(x , y , z)dz dx +

F3(x , y , z)dx dy =

∫∫
∂V

F · dS.
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Ostrogradsky-Gauss theorem. An example
Compute integral

∫∫
∂C

x2dy dz + y 2dz dx + z2dy dx , where
∂C is a surface of cone x2

a2 + y2

a2 = z2

b2 as 0 < z < b.
Let’s change the variables x = a

b
r cos(α), y = a

b
r sin(α), z = z .

Then one gets: ∫∫
∂C

x2dy dz + y 2dz dx + z2dy dx =∫∫∫
C

(2x + 2y + 2z)dx dy dz =∫ b

0

∫ 2π

0

∫ z

0

(2r cos(φ) + 2r sin(φ) + 2z)
a2

b2
r dr dφ dz =

4π
a2

b2

∫ b

0

∫ z

0

rzdr dz =
π

2
a2b2.
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A physical interpretation of the
Ostrogradsky-Gauss theorem

Consider a fluid flowing through a closed surface S in
three-dimensional space. The velocity of the fluid at a point
(x , y , z) is given by the vector field
v(x , y , z) = vx(x , y , z)i + vy (x , y , z)j + vz(x , y , z)k.
The divergence of this vector field represents the rate at which
fluid is flowing out of a given volume:

∇ · v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z
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A physical interpretation of the
Ostrogradsky-Gauss theorem

The divergence theorem states that the total amount of fluid
flowing out of the closed surface S is equal to the integral of
the divergence of the velocity field over the volume enclosed
by the surface: ∫∫

S
v · dS =

∫∫∫
V

(∇ · v) dV

where dS is the outward-pointing differential surface element
on S and dV is the differential volume element inside the
surface.
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rot of a vector field as a limit of circulation

The rotor (also known as the curl) of a vector field F at a
point is a measure of how much the vector field "curls"or
rotates around that point. One way to express the rotor using
the Green’s formula is as follows:

rot(F)(r) = lim
A→0

1

A

∮
C

F(r′) · dr′

where r is the point of interest, C is a small closed curve
centered at r, and A is the area enclosed by C .
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rot of a vector field as a limit of circulation

This formula tells us that the rotor of F at a point r is equal
to the limit of the circulation of F around a small closed curve
C centered at r, as the area enclosed by C shrinks to zero.
To see why this formula is true, we can use the Green’s
formula, which relates the circulation of a vector field around a
closed curve to the integral of the rotor of the vector field over
the area enclosed by the curve:∮

C

F · dr =

∫∫
A

rot(F) · dS

where A is the area enclosed by the closed curve C , and dS is
the outward-pointing differential surface element on A.
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rot of a vector field as a limit of circulation

If we divide both sides of this equation by the area A and take
the limit as A→ 0, we obtain:

lim
A→0

1

A

∮
C

F · dr = lim
A→0

1

A

∫∫
A

rot(F) · dS

The left-hand side of this equation is the circulation of F
around a small closed curve C centered at r, and the
right-hand side is the average value of the rotor of F over the
area enclosed by C .
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rot of a vector field as a limit of circulation

Therefore, as A shrinks to zero, the right-hand side approaches
the value of the rotor of F at r, and we obtain the formula:

rot(F)(r) = lim
A→0

1

A

∮
C

F(r′) · dr′

This formula tells us that the rotor of F at a point r is equal
to the limit of the circulation of F around a small closed curve
C centered at r, as the area enclosed by C shrinks to zero.
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A divergence as a limit of a flow through an
envelope

Let’s consider a three-dimensional vector field
F(r) = Fx(r)i + Fy (r)j + Fz(r)k and a small closed envelope E
centered at a point r0 in space.
We can think of the envelope E as a small smooth surface
enveloping a volume ε.
The net flow rate of F through the closed envelope E is given
by the flux integral:

Flow =

∫∫
∂E

F · dS

where ∂E is the boundary surface of the envelope E and dS is
the outward-pointing differential surface element on ∂E .
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A divergence as a limit of a flow through an
envelope

By the divergence theorem, the net flow rate of F through the
closed envelope E is equal to the integral of the divergence of
F over the volume enclosed by the envelope:∫∫

∂E
F · dS =

∫∫∫
E
∇ · F dV

where dV is the differential volume element inside the
envelope E .
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A divergence as a limit of a flow through an
envelope

As the size of the envelope E shrinks to zero, we can define
the divergence of F at r0 as the limit of the net flow rate
through small closed envelopes centered at r0, as the size of
the envelopes shrinks to zero:

div(F)(r0) = lim
ε→0

1

ε

∫∫∫
E
∇ · F dV = lim

ε→0

1

ε

∫∫
∂E

F · dS

where E is a small closed envelope centered at r0 and
enclosing a volume ε.
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