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A parametric form of a curve

Let us consider a curve on a plane. Assume that in the
Cartesian coordinates can be written as x = x(t) and

y =y(t).
V={(v, V)

B(x(t1), y(t))

A(x(to), ¥ (o))
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A length of a curve

The components of tangent vector at given point can be
defined as the derivatives with respect to t v, = x, v, = y.
The length of the tangent vector:

V=, /vZ+ v

The length of the path for the curve of the point over the
interval of the parameter t € [ty, t4]:

t1
5:/ VX2 + y2dt.
to
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A curvature

The second derivative at the point:

Theorem

2 7 _ . .
If \/v2 + v2 = const, then the vector of the second derivative
always is orthogonal to the tangent vector.




A curvature

Proof. Let us differentiate the scalar product:




A first derivative and tangent vector for the circle

Let us consider the circle:
x = Rcos(wt), y = Rsin(wt).
The tangent vector is:
vy = —Rwsin(wt), v, = Rwcos(wt).

The formula for the length of the tangent line looks like:

V= \/R2w2 sin®(wt) + R2w? cos?(wt) = Rw.
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Second derivative for the circle

The second derivative is defined the following formulas:

a, = —Rw?cos(wt), a, = —Rw?sin(wt).

V2
_ _ 2 _
|a,,‘— a)2<+a)2/—R(A) —F

This vector is orthogonal with respect to the tangent one.
Therefore one obtains a normal vector.

and
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Second derivative in general case

The second derivative
might be represented as
3 a sum two orthogonal vectors
ar as the tangent direction
and the normal one.
The value of the tangent
content of the second derivative can be obtained as follows:
(a,v)
(v, V)
The projection of the second vector of the tangent line can be
represented as follows:

QL

lar| =

. (@&v), awtav, - -
N A7 MV (v + )
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Normal vector

The normal vector can be represented as:

—

an:c‘T—zTT.

The same formula in the coordinate form is follows:
. 1

= VY. (a (V2 + vf)i +a, (v + vf)j —

a, =

=

(axvx + ayvy)vxf— (axvx + ayvy)vyj) =

(axvy —ayv), - -
v2 + vy2 (wi = vd)

The length of the normal vector:

|2l = V/(a,) — (ar, ar)

_ |ax v, — a, V|
V]




The curvature in a general case

The formula for curvature of the curve:

—(ar,ar)  |awvy, —ayv|  |ax V|

_ B (
P= v~ (V. V) A G EL




General formulas

The radius-vector for the trajectory is

r'= (x(t), y(t), z(t)).
The tangent vector to the curve is following:

d

V= —r=(x,y,2).
p (x,y,2)
The second derivative is:
d? e
a=—r=(xy,2).

dt?
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The vector of the second derivatives in 3D

The tangent projection of the vector of a second derivative:

a axVx +ayv, + a;v,
(v, V) v2+v2+v2

(Val + v + vzk).

The normal component of the second derivative vector:

—

a,=a—ar.

The normal and tangent vectors define the osculating plane.
Define a unit vectors = —%—= and 7 = —== The vector

\/ (‘77‘7) V (5"75") .
b = i x n'is called binormal. The vectors i, i, b define the
orthogonal system of the vectors connected with the curve.
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A torsion of the curve

Torsion is a derivative of the angle of rotation of osculating
plane with respect to changing the length of the curve.

bt - 2\ an
an b
e —
v

The normal vector to the osculation plane:

b=vxa.

The formula for the torsion has the form:
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A work on the motion over given curve

Define the plane with various

friction as a scalar field f(x,y),

then the work of the friction depends
on the trajectory over the plane.

The work over

length d/ is equal dA = f(x, y)dl.

Let as consider the line £ in

a parametric form x(t), y(t), where t
is a parameter and the element of the

dl = \/x"2 + y2dt.

The summary work over the given line is:

A:/' f(x(t),y(t))d/:/f(x(t),y(t))\/x’2—|—y’2dt.
c c

Such integral is called a line integral over scalar field.

length




Definitions and synonyms

One says f(x, y) is a scalar field on domain D , if
Y(x,y) € D I (x,y): (x,y) = R.
Synonyms of the words "line integral"are the following

» path integral,
» curvilinear integral,

» contour integral,

» curve integral.
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A center mass of the curve

Let's assume that it has linear density p.

o Y A formula
/‘/—\ for the center of mass of a planar curve:

1
= M/EXP(XJ/)d/

1
o1 /
y M/Lyp(x,y)d

» T
>
X1

where M is the mass of the wire and L is the curve traced out
by the wire.
Then the mass M of the wire is given by:

M= /E o(x.y) dl.
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Definition of a vector field

We will say a vector field is defined in the set (domain or a
curve), if a vector-valued function is defined at any point of
the set:

—

V(X,y) €D EI("__(X?y)) = (Fl(X7 t)7 FZ(Xay))'
A special kind of the vector field is the gradient field:
F = ﬁf(x,y)7

where f(x,y) is smooth function of their variables.
The physical examples of vector fields are
» A vector of velocity of a flow, for example a liquid or an
air.
» Vectors of gravitational force, magnetic force and
electrostatic force.

Vector fields
lololeoleolele]



Sapienti sat-2

A curl (rotor) of the vector flow

Let us consider two vector fields, which are the uniform
expansion F = (x, y) and rotation ® = (—y, x).
These flows are orthogonal:

(F,®) = —xy +yx =0.

The uniform expansion flow is the gradient flow:

— X2 y2 —
—+ =] = =F.
(2 + 2) (x,¥)
Let us consider the cross product in 3D space:

=0

O ¥le x

VxF=

Vector fields
(o] leolelelele]

x Rlo =y
< Flo~y
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A curl (rotor) of the vector flow

<l
X
©!
I
o Plo xy
I
x|

X o~y

)
9
ox

A rotor of the vector fields

NPl =
N~y
SS¥le >y

V x V =rot(V) = curl(V) =
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Geometrical types of the vector fields

<N

X g ’

> Uniform expansion F = ix +Jy.
> Rotation F = —7y +fx.
» Shear l-::fy

> Whirlpool F 5+ J-

x2+y

_[ 2+y

Vector fields
[oleole] lelele]




A definition of a divergence

A% N oV, N oV
-~ Ox dy 0z

(V, V) = div(V)

Examples.
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A work on the motion over given curve

Let's consider a vector field F:

i — e -
i FZ 7 F(va):IFl(X7y)+./F2(X7y)'
AL 7
4 Foe> Such field may be considered as
4 a liquid flow though a membrane of

electromagnetic field around a wire.

- d d
/(FJ)d/—/(Fl &Y g,
r r dt dt

/(ﬁ,?)d/:/Fldx+F2dy;
L L
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A line integral of differential

Let's consider the function F(x,y).

SRR A differential of this function is:
\ OF OF
/} dF (x,y) = adx—k @dy.
A

The integral over a curve L:
(x(t), y(t)) with starting point A
and final point B :

oF oF OF Ox OF Oy
/(A,B) adx + ady = /(A,B) aﬁdx + afyady =

T(B)
/ OF 4t — F(B) — F(A).
Ta) Ot




A line integral of differential

Theorem
If3F(x,y): Ui(x,y) = 95 and Us(x,y) = 8F , then:

/(A . Ui(x,y)dx + Us(x,y)dy = F(B) — F(A)

and the integral does not depend on the integration path.

The Green's theorem
(o] loleolelelele]



B S EEEEEEEEEE————————
Representations for the line integral

» The scalar parametric form:

| = /£ F(x(1), y(1))dl.

» The parametric scalar product form:
= dr

| = /(f, —)dl.
s dl

» The differential scalar product form:

/:/L()?,df).

» The differential scalar form:

/:/ fi dx + f, dy.
JL

The Green's theorem
[ole] lelelelele]



Green's theorem

Let £ be a simple closed curve in the plane that is piecewise
smooth and oriented counterclockwise, and let D be the
region enclosed by £. Let F(x,y) = (P(x.y). Q(x, y)) be a
vector field whose components have continuous partial
derivatives on an open region containing D. Then the line
integral of F around £ is equal to the double integral of the
curl of F over D:

ﬁP(x,y)dx + Q(x,y)dy = //D (23 - ?;) ds

where ds is the differential of area.

The Green's theorem
[olole] lelelele]
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Green's theorem

In other words, the counterclockwise circulation of the vector
field around the curve L is equal to the net outward flux of the
curl of the vector field through the region D enclosed by L.
Let V = Pi+ Qfand dr = idx +fdy + kdz, then

jI{VdF) //rot\7/:

The Green's theorem
[ololeole]l lelele]



//ds_/ / —dydx—

—7£P(X,y)dx,

//d —/ / dde—]{Q(X,Y)dy,
s ot - [ <@MP)Z




An area of the set D

5—// dydx——j{ydx,
D c
5—// dydx-jgxdy,
D c
5:// dydx:lj{xdyydx.
D 2Jc

The Green's theorem
...... (o)



A corollary of the Green's theorem

Let F = Vf, f(x,y): (x,y) — R then:

j’{ (F,dF) =0.
c
Proof.

0°f 0*f
j[ F dr) = ]{dxntdy—// (0X0y_0y0x> ds
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Embedded 2D manifolds in 3-dimensional space

An embedded manifold is

a subset M of Euclidean space R?
that can be locally parameterized

by a smooth function x : U — R3,
where U is an open subset of R?.

In particular, for any point p € M,
there exists a neighborhood V

of p in R? and a smooth function
x: U — VN M such that x is

a homeomorphism between U and

An area on a surface




An example of embedded 2D manifold

The parametric equation
¢ p for a torus with major radius
zA R and minor radius r is given by:

x = (R+ rcos®)cos¢
y = (R+ rcos®)sin¢

I z=rsin0

where 0 < 0 <2mand 0 < ¢ <27
are the polar and azimuthal angles, respectively.

An area on a surface
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Orientable manifolds

An orientable
manifold is a regular manifold
M that admits a consistent choice
of orientation. More precisely, M is
i orientable if and only if there exists
a continuous non-vanishing vector
field v on M such that for any
two points p, q € M, the parallel
transport of v(p) along any smooth path connecting p and q
is equal to v(q).
As a typical example one can image a sphere.

An area on a surface
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Non-orientable manifolds

A non-orientable manifold

is a regular manifold M that

does not admit a consistent choice
of orientation. More precisely, M

is non-orientable if and only if there
exists a continuous non-vanishing
vector field v on M such that

for any two points p, q € M, the
parallel transport of v(p) along any
closed loop on M is equal to —v(p). A classic example of a
non-orientable manifold is the Mobius strip.

An area on a surface




A parametric definition of the M"obius strip

The Mobius strip can be parametrized by the following

equations:
v o u
x(u,v) = ( 5 €05 ) cos u
y(u,v) = <1 + gcos ;) sinu
v . u
z(u,v) = 55 in 5

where 0 < u <27 and -1 <v <1,

In these equations, the parameter u controls the orientation of
the strip around its central axis, while the parameter v
controls the width of the strip. The strip has a half-twist in it,
which can be seen by observing that the z-coordinate changes
sign as u goes from 0 to 2.

An area on a surface
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A definitions of a surface using a vector approach

A parametric surface
is a surface in three-dimensional

# space that is defined using
a set of equations of the form:
At Y vy = x(u, v)ity(u, vt z(u, v)k

where u and v are parameters that vary over some domain,
and /, j, and k are the standard basis vectors in
three-dimensional space.

An area on a surface
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A parametric definition of a surface using a
coordinate approach

Alternatively, a parametric

Ik surface can be defined using a

@ set of three equations of the form:

1y

)(/ i x=x(u,v), y=y(uv), z=2z(u,v)
LA

A U where u and v vary over some

domain. These equations describe
how the x, y, and z coordinates of a point on the surface vary
as the parameters v and v vary.

An area on a surface




A tangent plane for given surface
Let S be a surface in R® given by the equation z = f(x, y),

where f is a differentiable function.
The equation of the tangent plane is given by:

z="f(a,b)+ gi(a, b)(x — a) + g;(a, b)(y — b)

or, equivalently,

r(x}y) = <X,y, f(a, b)> +

OF (2 5), 20 (a.b),=1) - (x — a,y — b, F(x,y) — (2, b)) = 0

<§(a/ b) 87)/(

An area on a surface
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An area of surfaces

The area of a small piece of the surface can be approximated
using the formula for the area of a parallelogram:

dA = ||ry x £||dudv

where r;, and r,, are tangent vectors to the surface, and du and
dv are small increments in the u and v directions, respectively.
To get the total area of the surface, we integrate this formula
over the entire surface:

A= // ||Fy % ry||dudv
S

where S is the surface we're interested in and the double
integral is taken over a parametrization of the surface.




An integral over a surface

Integration on a surface is the process of calculating the
integral of a function f(x, y, z) over a two-dimensional surface
S in three-dimensional space. The surface S can be defined
using either a set of equations or a parametrization, and the
integral is typically computed using a double integral over a
parametrization of the surface:

/ /5 f(x.y.7)dS

where dS represents the area element on the surface S.
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An integral over a surface for a vector field

Let S be a smooth oriented surface
in R3 with unit normal vector field A. Let

F(x,y,2) = (P(x,y,2), Q(x,y,2), R(x,y,2))

[/
Ay
jak= o .
be a continuous vector

field defined on a region containing S.
Then the flux of F across S is given by:

J[[F s
s

where 11’ is the unit normal vector to S, and dS is the
differential surface area element on S.

An area on a surface
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A geometric interpretation of surface integral

Let f(r) be a scalar field and

> F(r) be a vector field defined in the
ﬁ region of 3D space containing the
/ .
surface S. Let Sp be a collection
X ¥ of small patches or elements of the
surface S, such that the union of
all the patches covers the entire surface. Each patch S; has an
area AS;, and is centered at a point r; on the surface.
The surface integral of f over S can be approximated by a

sum of integrals over each small patch, weighted by the area
of the patch:

//S f(r) dS = AlSI,-riO . f(r,-)AS,-

An area on a surface




A geometric interpretation of surface integral

Similarly, the surface integral of the vector field F over S can
be approximated by a sum of integrals over each small patch,
weighted by the normal vector to the patch:

//s F(r) - dS ~ Z F(r)) - n,AS;

where n; is the outward-pointing normal vector to the patch S;.

//5 F(r)-dS = lim F(r/) - n;AS;

AS;*}O .
1

An area on a surface




A surface integral as an integral over projections

//F ndS //Fle, n1+

Fa(x,y,z)n, + F3(x,y,z)ns) dS.

The projection of the

infinitesimal area dS on coordinate
planes can be represented

as follows: ndS = dy dz,

npdS = dz dx, n3dS = dx dy.

As a result one obtains:

//F ndS = //ley, )dy dz +

Fa(x,y,z)dz dx + F3(x,y, z)dx dy.

An area on a surface




The formula written in the terms of the cross
product

/LF.dS _ //D(F(f(u, V) (22( ) X V)) o

In this formula, F is the vector field, r(u, v) is the
parameterization of the surface S, and D is the domain in the
(u, v)-plane over which the surface is parameterized.

or  Or
ds—%XadUdV

An area on a surface




An example of the surface integral

Compute the surface integral of the vector field

F(x,y,z) = x?i + y?j + z%k over the part of the surface of the
sphere x? + y? + z? = 4 that lies in the first octant.

One possible parameterization of the surface of the sphere is
given by:

r(0, ¢) = (2sin 0 cos ¢)i + (2sinOsin ¢)j + (2 cos )k
where 0 < 0 < 5 and 0 < ¢ < 5 are the polar and azimuthal

angles, respectively, that specify the location of each point on
the surface in the first octant.

An area on a surface
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An example of the surface integral

To evaluate the surface integral, we need to compute the dot
product of the vector field F with the area element dS at each
point on the surface, and then integrate over the surface using
the appropriate area element:

/Lp.ds—/f/flr(r(e,cb))-(g; 2 do

where 2 o and are the partial derivatives of r(6, ¢) with
respect to 6 and ¢, respectively, and x denotes the cross
product.

An area on a surface




An example of the surface integral

Using the parameterization r(6, ¢) and the definition of the
vector field F, we can compute:

or

50 = 2 cos(#) cos(¢)i + 2 cos(f) sin(¢)j — 2sin(#)k,
g{; = —2sin(f) sin(¢)i + 2sin(#) cos(¢)j + Ok,
or  Or ! i k

— X — = | 2cos(f) cos(¢) 2cos(f)sin(¢p) —2sin(d)k| =
9006 | ssin()sin(d) 2sin(f)cos(¢) O

4 5in?  cos i + 4sin” O sin ¢j + 2sin(20)k,

F(r(0, ¢)) = 4sin? 0 cos? pi + 4sin? 0 sin? ¢j + 4 cos? Ok.




An example of the surface integral

Substituting these expressions into the surface integral, we get:

//5 F-dS= /O;T /Og(l6sin(9)4sin(¢)3 I

4cos (0)2 (4 cos (0) sin (#)sin (d))2 + 4 cos (0) sin (0)cos ((b)z) +
16sin (0)*cos (¢)*) df dp =

/2
/ (37sin (¢)* + 4sin (¢)° + 3mcos (¢)° + 4cos (¢)°)dp = 67
0




The Ostrogradsky-Gauss therem

For a smooth vector field F(r) defined in a region of 3D space
containing a closed surface S that encloses a volume V/, we

have:
JJ[w-Frav=[[F-as

In this formula, V is a closed volume, with boundary surface
S, and F is a vector field.

///v F)dV = ///8F1 F2 aaF3dxdydz

The Osrogradsky-Gauss theorem




A proof of the Ostrogradsky-Gauss theorem

Puc.: The integration over alone x_(y, z) < x < x;(y, z) looks like
changing the body onto a bunch of spaghetti. Here the bunch of
spaghetti are noted as a set of green intervals.

Let's consider the first term:

. F x4 (y,z) F
/// @dxdde:// / @dxdde:
v Ox oV JIx_(y,z) Ox
I Atcyadvd- [ Recyaddz= [[ Aoz
v+ Jov- v

Gauss theorem




A proof of the Ostrogradsky-Gauss theorem

Similar calculations for the rest parts of the integral give a

result:
/// (V-F)dV
v
—// Fi(x,y,z)dy dz +
oV

Fa(x,y,z)dz dx +

Fi(x,y,z)dxdy = // - dS.

The Osrogradsky-Gauss theorem




Ostrogradsky-Gauss theorem. An example

Compute integral [, x 2dy dz + y2dz dx + z%dy dx, where

0C is a surface of cone %; —i— v = Zi as 0 < z<b.
Let's change the var|ab|es X = Brcos(a),y = 2rsin(a),z = z.
Then one gets:

// x?dy dz + y?dz dx + z%dy dx =
aC

///(2x—|—2y+22)dxdydz:

27
/ / / (2r cos(¢) + 2rsin(¢) + 2z) b2rdr do dz =

47r/ rzdr dz = gazbz.




A physical interpretation of the
Ostrogradsky-Gauss theorem

Consider a fluid flowing through a closed surface S in
three-dimensional space. The velocity of the fluid at a point
(x,y, z) is given by the vector field

v(x,y,z) = w(x,y, 2)i+ v (x,y, 2)j + vo(x, vy, 2)k.

The divergence of this vector field represents the rate at which
fluid is flowing out of a given volume:

Ove  Ov,  Ov,
= —+=2+

V-v




A physical interpretation of the
Ostrogradsky-Gauss theorem

The divergence theorem states that the total amount of fluid
flowing out of the closed surface S is equal to the integral of
the divergence of the velocity field over the volume enclosed

by the surface:
//v-dS:///(V-v)dV
S v

where dS is the outward-pointing differential surface element
on S and dV is the differential volume element inside the
surface.

The Osrogradsky-Gauss theorem
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rot of a vector field as a limit of circulation

The rotor (also known as the curl) of a vector field F at a
point is a measure of how much the vector field "curls"or
rotates around that point. One way to express the rotor using
the Green's formula is as follows:

rot(F)(r) = lim ;%CF(r’) -dr’

where r is the point of interest, C is a small closed curve
centered at r, and A is the area enclosed by C.

The Osrogradsky-Gauss theorem




rot of a vector field as a limit of circulation

This formula tells us that the rotor of F at a point r is equal
to the limit of the circulation of F around a small closed curve
C centered at r, as the area enclosed by C shrinks to zero.

To see why this formula is true, we can use the Green's
formula, which relates the circulation of a vector field around a
closed curve to the integral of the rotor of the vector field over
the area enclosed by the curve:

fCF-dr—//Arot(F)-dS

where A is the area enclosed by the closed curve C, and dS is
the outward-pointing differential surface element on A.

The Osrogradsky-Gauss theorem




rot of a vector field as a limit of circulation

If we divide both sides of this equation by the area A and take
the limit as A — 0, we obtain:

1
Iimj{F dr—hm//rot
A=0 A [

The left-hand side of this equation is the circulation of F
around a small closed curve C centered at r, and the
right-hand side is the average value of the rotor of F over the
area enclosed by C.

The Osrogradsky-Gauss theorem




rot of a vector field as a limit of circulation

Therefore, as A shrinks to zero, the right-hand side approaches
the value of the rotor of F at r, and we obtain the formula:

This formula tells us that the rotor of F at a point r is equal
to the limit of the circulation of F around a small closed curve
C centered at r, as the area enclosed by C shrinks to zero.

The Osrogradsky-Gauss theorem




A divergence as a limit of a flow through an
envelope

Let's consider a three-dimensional vector field

F(r) = F.(r)i+ F,(r)j + F.(r)k and a small closed envelope £
centered at a point rg in space.

We can think of the envelope £ as a small smooth surface

enveloping a volume e.
The net flow rate of F through the closed envelope £ is given

by the flux integral:
Flow = // F-dS
o€

where OE is the boundary surface of the envelope £ and dS is
the outward-pointing differential surface element on 0€.

The Osrogradsky-Gauss theorem




A divergence as a limit of a flow through an
envelope

By the divergence theorem, the net flow rate of F through the
closed envelope £ is equal to the integral of the divergence of
F over the volume enclosed by the envelope:

Jfr o fff oo

where dV is the differential volume element inside the
envelope £.

The Osrogradsky-Gauss theorem




A divergence as a limit of a flow through an
envelope

As the size of the envelope £ shrinks to zero, we can define
the divergence of F at ry as the limit of the net flow rate
through small closed envelopes centered at rg, as the size of
the envelopes shrinks to zero:

div(F)(ro) = lim — ///V FdV = lim - //F dS
e—0 € e—0 € €

where £ is a small closed envelope centered at rq and
enclosing a volume e.

The Osrogradsky-Gauss theorem




	Curves
	Vector fields
	The Green's theorem
	An area on a surface
	The Osrogradsky-Gauss theorem

