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Series. Definition of convergence
A definition of series as symbol:

S =
∞∑
n=1

an.

The sum of several terms of the series:

SN =
N∑

n=1

an

is called partial sum.
The series is called convergent if the limit exists:

S = lim
N→∞

SN .
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Diversity of convergence. Chesaro summation
Divergent series:

S =
∞∑

N=1

(−1)n−1.

A definition of convergence by Chezaro:

S = lim
n→∞

1

n

n∑
n+1

sn, sn =
n∑

k=1

ak .

In this case the Chesaro sum is follows:
∞∑
n=1

(−1)n−1 =
1

2
.
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Diversity of convergence. Borel summation
A following series diverges at any point x :

φ(x) ∼
∞∑
n=1

(−1)n−1xnn!.

Let’s define the Borel summation:

S =

∫ ∞
0

e−t
∞∑
n=0

tn

n!
an, A(z) =

∞∑
k=0

akz
k .

∫ ∞
0

e−t
∞∑
n=0

(−1)n
tn

n!
n!(−1)nzndt =∫ ∞

0

e−t
∞∑
n=0

(tz)ndt =

∫ ∞
0

e−tdt

1 + tz
.
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Riemann series theorem

Consider the series

S =
∞∑
n=0

(−1)nun,

where un > un+1 > 0, un → 0 as n→∞ and both series

s+ =
∞∑
n=0

u2n, s− =
∞∑
n=0

u2n+1

diverge.
Then one can rearrangement of the series such way, that the
sum might be any number.
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Chebyshev distance

If an element is
defined by two properties of the different
nature, then to define the difference
two objects A(x1, x2) and B(y1, y2)
one can consider a lot of variants.
One can define the distance
ρ(A,B) as Chebyshev distance:

ρC (A,B) = max
i=1,2
|xi − yi |.

The ball with radius 1 in the term of Chebyshev distance.
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Manhattan distance

Another example of the distance might
be defined as Manhattan distance:

ρM(A,B) = |x1 − y1|+ |x2 − y2|.

The ball with radius
1 in terms of the Manhattan distance.
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Euclidean distance

At the end
one can define as Euclidean distance:

ρE (A,B) =
√

(x1 − y1)2 + (x2 − y2)2.

The ball with
radius 1 in terms of Euclidean distance.
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The two-dimensional unit ball
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The red lines are border
of of the ball of radius R = 1
for Chebyshev distance.
The blue
lines define the border of the
ball of the radius R = 1 for
the Manhattan distance.
The black line
is the border of the of the
ball of the radius R = 1 for
the Euclidean distance.
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Properties of the distance
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The defined
distance has the following properties.
I ρ(A,B) = 0⇔ A ≡ B ;
I ρ(A,B) ≥ 0;
I ρ(A,B) + ρ(B ,C ) ≥ ρ(A,C ).

The picture shows that Manhattan
norm is equivalent to Euclidean one.

Theorem about equivalence of norms

∀|| · ||1,2, ∃C1,C2 > 0 :

C1||X ||1 ≤ ||X ||2 ≤ C2||X ||1.
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A limit of a function of two variables

If ∀ε > 0 ∃δ(ε) : |F (Y )− A| < ε ∀Y : ||Y − X || < δ, then
the value A is a limit of the function F in the point X :

lim
||Y−X ||→0

f (X ) = A.

A function which has a limit in all pints of given set is
continuous function on this set.
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Examples of the approaches to the given point

Let’s consider
the origin as a point of approaching.

X → 0, ⇒ ||X || → 0 :

1. X =
(x1, x2), ||X || → 0 ⇒ x1 → 0, x2 → 0;

2. X = (x1, x2), ||X || → 0⇒ x2 → 0, x1 → 0;
3. X = (x1, x2), ||X || → 0⇒ x1 = kx2 → 0, x2 → 0;
4. X = (x1, x2), ||X || → 0⇒ x1 = r cos(α), x2 =
r sin(α), r → 0;
5. X = (x1, x2), ||X || → 0⇒ x1 = r cos(α/r), x2 =
r sin(α/r), r → 0.
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Examples of the limits

lim
X→0

(x2
1 + x2

2 ) = 0,

lim
X→(2,1)

(x2
1 + x2

2 ) = 4 + 1 = 5;

lim
x1→0

lim
x2→0

x1x2

x2
1 + x2

2

= lim
x1→0

0 = 0;

lim
x1→0

x1x2

x2
1 + x2

2

∣∣∣∣
x2=kx1

= lim
x1→0

x1kx1

x2
1 + k2x2

1

=
k

1 + k2
,

lim
r→0

x1x2

x2
1 + x2

2

∣∣∣∣ x1 = r cos(α),
x2 = r sin(α)

= lim
r→0

r 2 cos(α) sin(α))

r 2
=

1

2
sin(2α).
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Iterated limits and limit interchanging

Let’s consider the iterated limits adna limit as ||x || → 0:

lim
x1→0

lim
x2→0

x1

x1 + x2
= lim

x1→0

x1

x1
= 1,

lim
x2→0

lim x1 → 0
x1

x1 + x2
= lim

x2→0
0 = 0.

lim
r→0

x1

x1 + x2
= lim

r→0

r cos(φ)

r cos(φ) + r sin(φ)
=

cos(φ)

cos(φ) + sin(φ)
.

One can see both iterated limits exist but they are different
and a limit as ||x || → 0 does not exists.
This examples show that the changing of the iterated limits
can change the answer.
The question is: When can be changed the iterated limits?
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The theorem about interchanging the iterated
limits

If ∃ limX→0 = A and ∃ limx1→0 f (x1, x2) = f (0, x2)∀x2 6= 0,
then

lim
x1→0

lim
x2→0

f (x1, x2) = lim
x2→0

lim
x1→0

f (x1, x2) = A.

Proof.

||X || < δ(ε)⇒ |f (x1, x2)− A| < ε ⇒ |f (x1, 0)− A| < ε,⇒
lim
x1→0

= A,⇒ lim
x1→0

lim
x2→0

f (x1, x2) = A.
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Invariant form of the differential
Consider the changing of coordinates for x , y :

x = x(u, v), y = y(u, v),

Below we suppose that the functions x(u, v) and y(u, v) are
differentiable.

df =
∂f

∂x
dx +

∂f

∂y
dy =

=
∂f

∂x

(
∂x

∂u
du +

∂x

∂v
dv

)
+
∂f

∂y

(
∂y

∂u
du +

∂y

∂v
dv

)
=

=

(
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

)
du +

(
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

)
dv

=
∂f

∂u
du +

∂f

∂v
dv .
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Differential for the N-dimensional function
The changing of the variables in general form looks like:

X = X (U), X (U) = (x1(u1, . . . , un), . . . , xN(u1, . . . , uN)).

In this case the differential has the same form:

df =
N∑

k=1

∂f

∂xk
dxk =

N∑
k=1

∂f

∂uk
duk .

As well as the differential is the primary (linear) part of the
function changing then the vector

~S =

(
∂f

∂x1
, . . . ,

∂f

ptxN

)
defines the direction of the grows of the function for the given
point X .
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Gradient of the function
The vector ~v =

(
∂f
∂x
, ∂f
∂y

)
is called gradient of the function

f (x , y) at the point (x , y). The gradient can be written by
following equivalent definitions:

~grad(f ) ≡
(
∂f

∂x
,
∂f

∂y

)
;

~∇f =

(
∂f

∂x
,
∂f

∂y

)
.

Define the differential of the independent variables as
~dX = (dx1, dx2, . . . , dxN). The differential of the function can
be written as scalar product:

(~∇f , ~dX ) =
N∑

k=1

∂f

∂xk
dxk .
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Geometrical sense of the partial derivatives

Let us consider surface z = f (x , y).
Consider a dissection of the surface
by the plain y = y0, y0 = const.
The intersection of the
surface and plain defines the curve
one-dimensional curve z = f (x , y0)
and the angle of the tangent line
for the curve at the point x0 is ∂f

∂x

The same for the curve
z = f (x0, y) one gets the angle of the tangent line for the
curve z = f (x0, y) is ∂f

∂y
.
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A normal vector

Rewrite the equation for the surface in the form:

z − f (x , y) = 0.

The differential on the surface should be following:

dz − ∂f

∂x
dx − ∂f

∂y
dy = 0.

This equality should be fulfill for any curve on this surface
(x(t), y(t), z(t)), then these equality is the scalar product for
the vector ~N =

(
∂f
∂x
, ∂f
∂y
,−1

)
and the vector of differential for

any curve on the surface. As well as the differential defines the
tangent lines for the surface, then ~N is a normal vector for the
surface at the point (x0, y0, f (x0, y0)).

Series Norms Limits Extreme points Manifolds Integrals Coordinates Fourier Numerics



Sapienti sat-1

Definition of extreme point
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The point
of differentiable function f (X )
where all derivatives of first order
are zero is called extreme point.
For following functions point
A = (0, 0) is an extreme point:

f (x1, x2) = 3x2
1 + x2

2 ,

∂f

∂x1
= 6x1,

∂f

∂x1
= 2x2;

f (x1, x2) = −3x2
1 − x2

2 ,
∂f

∂x1
= −6x1,

∂f

∂x1
= −2x2;
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Saddle point
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f (x1, x2) = 3x2
1 − x2

2 ,

∂f

∂x1
= 6x1,

∂f

∂x1
= −2x2.
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Necessary conditions for the extreme points

Theorem
If f (X ) is differentiable, then ∂f

∂xk
= 0, ∀k ∈ {1, . . . ,N} at the

interior maxima or minima point.

Theorem
Let f (X ) be differentiable function and all derivatives of the
first and second order are continuous, then

∂2f

∂xk∂xj
=

∂2f

∂xj∂xk
.
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Sufficient conditions for minima and maxima

Theorem
Let f (X ) be twice differentiable function of two variables and
the point A = (0, 0) is extreme point

I if
(

∂2f
∂x1∂x2

)2

− ∂2f
∂x2

1

∂2f
∂x2

2
< 0 and ∂2f

∂x2
1
< 0, then A is a

maxima;

I if
(

∂2f
∂x1∂x2

)2

− ∂2f
∂x2

1

∂2f
∂x2

2
< 0 and ∂2f

∂x2
1
> 0 then A is a minima;

I if
(

∂2f
∂x1∂x2

)2

− ∂2f
∂x2

1

∂2f
∂x2

2
> 0, then A is a saddle point;

I if
(

∂2f
∂x1∂x2

)2

− ∂2f
∂x2

1

∂2f
∂x2

2
= 0, then we need an additional

studies.
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Optimal problems with constrains
Let us consider the level of f the function should touch to the
plain. Then the gradients of f and the constraint curve are
collinear:

~∇f = −λ~∇φ.

Additional condition is the constrain
φ(x , y , z) ≡ ax + by + cz + d = 0.

φ(x , y , z) = 0.

Define the Lagrange function (Lagrangian):

L(x , y , z) = f (x , y , z) + λφ(x , y , z).
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Lagrange multipliers. General case

f = f (X ) and constraints φk(X ), k = 1, . . . ,m, then:

L = f (x) +
m∑

k=1

λkφk(X ).

The necessary condition for the extreme point:

~∇L(X ,Λ) = 0, Λ = (λ1, . . . , λm).
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The fastest gradient-wise descent

The gradient descent method for the opposite gradient
direction as function of the variable ∆:

Φ(∆) = F (~x − ~∇F (~x) ·∆), {x1, . . . , xN} = const .

So we seek the minimum of the one dimension function Φ(∆)
on the given direction.
1. Define an interval ∆ ∈ [0, b] such that Φ(∆) ≤ Φ(0).
2. Find a minimum Φ(∆∗) on ∆ ∈ [0, b] using for example a

bisection method.
3. The point ~X = ~x − ~∇F (~x) ·∆∗ is considered as next

position for the next step.
4. If ||~X − ~x || > δ, then this process repeats.
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An example

A(2, 3)

Consider the fastest gradient
descent for the function

f (x1, x2) = (x1+x2)2+3(x1−x2)2.

The level curves are ellipses
with big semi axis along
the straight line x1 = x2

and the minimum is (0, 0).
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Primary concepts for definition of a differentiable
manifold

I a1x1 + a2x2 + c = 0, is a one function of one variable:
x1(x2) = − 1

a1
(a2x2 + c) or x2(x1) = − 1

a2
(a1x1 + c). Both

forms are appropriated if a1,2 6= 0.
I a1x1 + a2x2 + a3x3 + c = 0 is a a function of two

variables: xk = − 1
ak

(∑
n 6=k anxn + c

)
.

I The following two equals define one dimensional function.

a1x1 + a2x2 + a3x3 + c = 0, b1x1 + b2x2 + b3x3 + d = 0.

I In a general case the m equalities of N variables define
N −m dimensional implicit function:

fk(x1, . . . , xN) = 0, k = 1, . . . ,m.
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Primary concepts for definition of differentiable
manifolds

I Does the formula
∑3

k=1 x
2
k − R2 = 0 define a

two-dimensional function?

xi = +

√√√√R2 −
3∑

k=1,k 6=i

x2
k , xi = −

√√√√R2 −
3∑

k=1,k 6=i

x2
k .

The answer looks like NO! because one obtains two
different values for xi for the same set of coordinates
{xk}i 6=k .
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Primary concepts for definition of differentiable
manifolds

I Another point of view for the spherical coordinates:

x1 = R sin(θ) cos(φ), x2 = R sin(θ) sin(φ), x3 = R cos(θ).

So we can see that in the spherical coordinate system one
obtain one-to-one map [0, π]× [0, 2π)→ a set of
x1, x2, x3.

We need a generalization for the function definition.
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Theorem about explicit form of the function

Let’s consider

fk(x1, . . . , xn) = 0, k ∈ {1, . . . ,M}, n ∈ {1, . . . ,N},

where all fk are continuously differentiable functions at the
origin.
If a rank of the matrix

S =

(
∂fk
∂xn

)
, sk,n =

∂fk
∂xn

is equal M at the origin then exists a neighborhood ofthe
origin, where the implicit function can be rewritten in an
explicit form as a function of N −M independent variables.
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A definition of differentiable manifold

The set in N dimensional space is called N −M dimensional
differentiable manifold if for any point A of the set exists
neighborhood of the A such that ∃ε > 0 and the manifold can
be defined by

xk = Fk(x1, . . . , xN−M) = 0, k ∈ {M , . . . ,N}, ∀x : ||x || < ε.

The set of maps covered all range of the variables is called an
atlas.
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Definition for a Jacobian

Let’s consider the changing of variables:

yk = fk(x).

the matrix  ∂f1
∂x1

. . . ∂f1
∂xn

. . .
∂fk
∂x1

. . . ∂fk
∂xn


is called Jacobian.
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External integral sum
Consider an area D on the
plane. Divide the area on
a mesh with steps ∆x and
∆y . rectangle element of
the plane ∆s = ∆x∆y .
Cover the D by the
rectangles ∆s = ∆x∆y
the and define
the sum of the rectangles,
which cover the D:

S =
∑
N

∆s.

Here N is the number of the elements ∆s which covered the
area D.
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Internal integral sum

Define σ as a sum of
the rectangles ∆s which
are internal of the D:

σ =
∑
M

∆s.

Here M is number
of the internal rectangles
for the D, M ≤ N Then
the area of the figure D:∑

M

∆s ≤ mesD ≤
∑
N

∆s.
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An area of the border

Define a difference
between sum external and internal
rectangles as a area of the border:

mes(∂D) ≤ (N −M)∆s.

Theorem A measure of a rectifiable curve is equal to zero.
Theorem. If a border ∂D of a certain area D is rectifiable curve,

then the area is measurable.
Counter example. Koch’s snowflake.
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Geometrical sense of the double integral

The projection of dσ
and dS connected by a formula:

dσ · cos(γ) = dS ⇒ dσ =
dS

cos(γ)
,

define ~e3 = (0, 0, 1), then

cos(γ) = (~n, ~e3) =
1√

1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2
.

σ =

∫∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

ds.
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Properties of the double integral
The sum of the integrals.Consider continuous function
f (x , y) on D. Let mes(∂D), D = D1 ∪ D2, D1 ∩ D2 = 0 and
mes(∂D1,2) = 0, then∫

D
f (x , y)ds =

∫
D1

f (x , y)ds +

∫
D2

f (x , y)ds.

Estimation of the double integral. Let
fm = min(x ,y)∈D f (x , y), Fm = max(x ,y)∈D f (x , y), then

S fm ≤
∫
D
f (x , y)ds ≤ S Fm

The mean value of the double integral. There exists
(xm, ym) such that:∫

D
f (x , y)ds = Sf (xm, ym).
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Fubini’s theorem
Let f (x , y) be a continuous
function defined on region D:
D = [a, b]× [g1(x), g2(x)]
or, the same,
D = [h1(y), h2(y)]× [c , d ]
where
g12(x) and h12(y) continuous
functions in the xy -plane.
Then the double integral
of f over D can be expressed
as an iterated integral:∫∫

D
f (x , y)ds =

∫ b

a

∫ g2(x)

g1(x)

f (x , y)dydx =

∫ d

c

∫ h2(y)

h1(y)

f (x , y)dxdy
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Definition of measure for volume of 3D body
A subset D of
R3 has a measurable 3D measure
if there exists a non-negative
real number V such that
∀ε > 0, ∃ ∪n

k=1 Bk of rectangular

boxes Bk such that D ⊂
n⋃

i=1

Bi and

n∑
i=1

|Bi | < V + ε,

where |Bi | denotes the volume
of the rectangular box Bi . The
number V is called the 3D volume

of D, denoted by vol(D).
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A Darboux criteria for the existence of the measure
for given 3D body

A subset D of R3 is measurable if and only if ∀ε > 0,
∃A = ∪nk=1Ak and B = ∪nk=1Bk where Ak and Bk are
rectangular boxes, A ⊂ D ⊂ B and

|B \ A| < ε,

where |B \ A| denotes the 3D volume of the set difference
B \ A.
In other words, a subset D of R3 is measurable if and only if it
can be enclosed by two finite unions of rectangular boxes with
arbitrarily close volumes.
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A theorem about measurable of bounded 3d body
with measurable border surface

Let S = ∂D be a smooth
and bounded surface in R3. If S
is measurable as 2D surface, then
S has zero volume (3D measure).
In other words, if S
is a smooth 2D surface in compact
K ∈ R3, then its area is zero.
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Counterexample. The Mundelbulb 3D fractal

Stolen from Internet!
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Definition of triple integral
Let D be a bounded and measurable domain in R3 and let
f : D → R be a function. The triple integral of f over D is
denoted by ∫∫∫

D

f (x , y , z) dx dy dz ,

and is defined as the limit of Riemann sums as the mesh size
approaches zero:∫∫∫
D

f (x , y , z) dx dy dz = lim
max(∆Vijk )→0

∑
i ,j ,k

f (ξijk , ηijk , ζijk) ∆Vijk ,

where (ξijk , ηijk , ζijk) ∈ Vijk , and ∆Vijk = vol(Vijk).
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Theorem about existence of triple integrals

(Existence of Triple Integral) Let D be a bounded and
measurable domain in R3, and let f : D → R be a function. If
f is continuous on D, then the triple integral∫∫∫
D

f (x , y , z) dx dy dz exists.
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From Cartesian to polar coordinate system

Consider
an elementary plate of the area
on the plane in a polar coordinates.

ds = r dr dφ.

Consider an integral over an area
with rectifiable border:∫∫

D
dxdy =

∫∫
D
ds =

∫∫
D
rdrdφ
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Changing of variables in two dimensional integrals
Let’s
consider a smooth
surface S defined
by a parametrization
~x = ~x(u, v),
where (u, v)
are parameters in some
domain D ⊂ R2. The

elementary area of S at a point ~x(u0, v0) is given by:

dS = ‖∂
~x

∂u
× ∂~x

∂v
‖du dv

where ‖ · ‖ denotes the Euclidean norm, and ∂~x
∂u
, ∂~x
∂v

are the
partial derivatives of ~x with respect to u and v , respectively.

Series Norms Limits Extreme points Manifolds Integrals Coordinates Fourier Numerics



Sapienti sat-1

Changing of variables in two dimensional integrals

Now, suppose we have a change of variables
(u, v) = (u(r , s), v(r , s)). Let ~y = ~x(u(r , s), v(r , s)) be a new
parametrization of the surface S in terms of the new variables
(r , s). Then the partial derivatives of ~y with respect to r and s
are given by the chain rule:

∂~y

∂r
=
∂~x

∂u

∂u

∂r
+
∂~x

∂v

∂v

∂r

and
∂~y

∂s
=
∂~x

∂u

∂u

∂s
+
∂~x

∂v

∂v

∂s
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Changing of variables in two dimensional integrals

Taking the cross product of these vectors, we have:

∂~y

∂r
× ∂~y

∂s
=
(∂u
∂r

∂v

∂s
− ∂u

∂s

∂v

∂r

)∂~x
∂u
× ∂~x

∂v

where we have used the fact that ∂x
∂u
× ∂x

∂v
is a constant vector

on the surface S .
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Changing of variables in two dimensional integrals

Therefore, the new elementary area dS ′ in terms of the
variables (r , s) is given by:

dS ′ = ‖∂
~y

∂r
× ∂~y

∂s
‖dr ds =

∣∣∣∂u
∂r

∂v

∂s
− ∂u

∂s

∂v

∂r

∣∣∣dS
where we have used the fact that the cross product of two
vectors has the same Euclidean norm as their determinant.
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Changing of variables in two dimensional integrals

Therefore, the elementary area changes by a factor of∣∣∣∂u∂r ∂v∂s − ∂u
∂s

∂v
∂r

∣∣∣ when changing variables from (u, v) to (r , s).
This is known as the Jacobian determinant of the change of
variables, and it appears in many areas of mathematics,
including multivariable calculus and differential geometry.
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Changing of variables in triple integrals

Consider a function f (x , y , z) defined on a region D in
three-dimensional space, and express the integral of f over D
in terms of a new set of coordinates (u, v ,w), where
x = x(u, v ,w), y = y(u, v ,w), and z = z(u, v ,w). Then the
triple integral can be written as: ∫∫∫

D

f (x , y , z)dV =∫∫∫
D′
f (x(u, v ,w), y(u, v ,w), z(u, v ,w))|J(u, v ,w)|dudvdw ,

where D ′ is the region in the u, v ,w coordinate system that
corresponds to the region D in the x , y , z coordinate system,
and J(u, v ,w) is the Jacobian determinant of the
transformation.
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Changing of variables in triple integrals

The Jacobian is given by:

J(u, v ,w) ≡
∣∣∣∣ ∂(x , y , z)

∂(u, v ,w)

∣∣∣∣ =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
The Jacobian measures the change
in volume due to the change of variables.

dV =

∣∣∣∣ ∂(x , y , z)

∂(u, v ,w)

∣∣∣∣ du dv dw .
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Example of changing to the spherical coordinates

Let a
function f (x , y , z) be defined in Cartesian
coordinates (x , y , z). Change to spherical
coordinates (r , θ, φ), where r is the radial
distance from the origin, θ is the polar
angle measured from the positive z-axis,
and φ is the azimuthal angle measured
from the positive x-axis in the xy -plane.
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Example of changing to the spherical coordinates
The transformation
from Cartesian coordinates
to spherical coordinates is given by:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

where
0 ≤ r ≤ R , 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π.

∂(x , y , z)

∂(r , θ, φ)
=

∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

∣∣∣∣∣∣ = r 2 sin θ.
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From the Fourier sum to the Fourier integral

Let f (x) is defined as x ∈ (−∞,∞) and
∫∞
−∞ |f (x)|dx = F .

Consider a Fourier series on the interval (−T ,T ) be a periodic
function with period T , and let an and bn be its Fourier
coefficients, defined by:

cn =
1

2T

∫ T

−T
f (y) exp

(
−i πn

T
y
)
dy

The Fourier series of f (x) is then given by:

f (x) =
c0

2
+

∞∑
n=−∞

(
cn exp

(
i
πnx

T

))
.
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From the Fourier series to the Fourier integral

Using these expressions, we can write the Fourier series as:

f (x) =
1

2T

∫ T

−T
f (y)dy +

1

2T

(
∞∑

n=−∞

∫ T

−T
f (y) exp

(
−i πn

T
y
)
dy exp

(
i
πn

T
x
))

=

1

2T

∫ T

−T
f (y)dy +

1

2T

(
∞∑

n=−∞

∫ T

−T
f (y) exp

(
i
πn

T
(x − y)

)
dy

)
.
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A sketch of derivation of the Fourier transform

Define ∆k = π
T
, kn = π

T
n.

f (x) =
∆x

2π

∫ T

−T
f (y)dy +

∞∑
n=−∞

(∫ T

−T
f (y) exp (ikn(x − y)) dy

)
∆k .

Consider a limit T →∞⇒ ∆x → 0, then one gets:

f (x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f (y) exp (ik(x − y)) dy

)
dk .

Let’s rewrite in more convenient form:

f (x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f (y) exp(−iky)dy

)
exp(ikx)dk .
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A sketch of derivation of the Fourier transform

Define

f̂ (k) =
1√
2π

∫ ∞
−∞

f (y)e−ikydy .

If f (y) ∈ C 2(−∞,∞) and
∫∞
−∞

∣∣∣dαf
dyα

∣∣∣ dy <∞, where

α ∈ {0, 1, 2}, then f̃ (k) ∼ O(k−2).
Proof.∫ ∞
−∞

f (y)e−ikydy =
f (y)e−iky

ik

∣∣∣∣∞
−∞

+
1

ik

∫ ∞
−∞

f ′(y)e−ikydy =

f ′(y)e−iky

−k2

∣∣∣∣∞
−∞

+
1

k2

∫ ∞
−∞

f ′′(y)e−ikydy = O(k−2).
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The Fourier transform

Therefore: ∫ ∞
−∞

∣∣∣∣f̂ (k)e−ikx
∣∣∣∣dx ≤ ∞.

Denote:

f̂ (k) =
1√
2π

∫ ∞
−∞

f (y)e−ikydy ,

f (x) =
1√
2π

∫ ∞
−∞

f̂ (k)e ikxdk ,

These integrals define the Fourier transform for the function
f (x) and inverse Fourier transform respectively.
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The Radon transform
Let’s consider a straight line
with a normal ~n = (cos(α), sin(α))
on the distance s from the
origin: x cos(α) + y sin(α)− s = 0.
The parametric
form of this line is follow:

x = − sin(α)t + s cos(α),

y = cos(α)t + s sin(α).

Then integral alonn this straight line for the function f (x , y) is
follow:

R(s, α) =

∫ ∞
−∞

f (−t sin(α) + s cos(α), t cos(α) + s sin(α))dt.
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The Radon transform and Fourier transform
The Radon transform can be represented trough two
dimensional Fourier integral:

f̂ (λ1, λ2) =

∫
R2

f (x , y)e i(λ1x+λ2y)dx dy ,

λ1 = ω cos(α), λ2 = ω sin(α),

s = x cos(α) + y sin(α), t = −x sin(α) + y cos(α).

x = s cos(α)− t sin(α), y = s sin(α) + t cos(α)

f̂ (ω cos(θ), ω sin(θ)) =∫∫
f (s cos(α)− t sin(α), s sin(α) + t cos(α))e iωsdt ds =∫ ∞

−∞
e iωs

∫ ∞
−∞

f (s cos(α)− t sin(α), s sin(α) + t cos(α))dt ds.
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The inverse Radon transform

R(s, α) =

∫ ∞
−∞

f̂ (ω cos(α), ω sin(α))e−iωsdω.

The inverse Fourier transform is given by formula:

f (x , y) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

f̂ (λ1, λ2)e i(λ1x+λ2y)dλ1dλ2 =

1

4π2

∫ 2π

0

∫ ∞
0

f̂ (ω cos(α), ω sin(α))e iω(x cos(α)+y sin(α))ωdωdα

1

4π2

∫ 2π

0

∫ ∞
0

R̂(ω.α)e iω(x cos(α)+y sin(α))ωdωdα

where R̂(ω.α) =
∫∞
−∞ R(s, α)e iωsds.
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The Radon transform and inverse Radon transform

f̂ (λ1, λ2) =

∫
R2

f (x , y)e i(λ1x+λ2y)dx dy ,

R(s, α) =

∫ ∞
−∞

f̂ (ω cos(α), ω sin(α))e−iωsdω.

f (x , y) =
1

4π2

∫ 2π

0

∫ ∞
0

R̂(ω.α)e iω(x cos(α)+y sin(α))ωdωdα,

R̂(ω.α) =

∫ ∞
−∞

R(s, α)e iωsds.
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2D mesh

Let f (x , y)
be a continuous function
defined on a domain D. The
border of the domain ∂D
is a piecewise smooth curve.
One
common method is to use
a rectangular grid with Nx

points in the x-direction and
Ny points in the y -direction.

Let’s define maxx∈D = b, minx∈D = a, maxy∈D =
β, miny∈D = α; ∆x = (b − a)/Nx , ∆y = (β − α)/Ny

Define the internal rectangles Sk and the rectangles
intersected the border of the domain as sk
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An approximation of 2D integral

Consider the approximation
of the integral by the sum:

∫∫
D
f (x , y) dS ≈

N∑
j=1

fk∆S +
1

2

n∑
l=1

fl∆S ,

where ∆S = ∆x∆y and fk = f (xi , yj). The point(xi , yj) is the
center of the rectangle Sk and fl = f (xi , yj), where (xi , yj) is
some point of sl .
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Error estimation

To estimate the error in the numerical approximation of the
integral using the rectangular grid method, we use Taylor’s
theorem to write the function f (x , y) as:

f (x , y) = f (xi , yj) +
∂f

∂x
(xi , yj)(x − xi) +

∂f

∂y
(xi , yj)(y − yj) +

1

2

∂2f

∂x2
(xi , yj)(x − xi)

2 +
1

2

∂2f

∂y 2
(xi , yj)(y − yj)

2 +

∂2f

∂x∂y
(xi , yj)(x − xi)(y − yj) + O(∆x3,∆y 3),

where xi and yj are the coordinates of the grid point (i , j), and
O(∆x3,∆y 3) denotes terms of order ∆x3 and ∆y 3 or higher.
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The error estimation in an elementary rectangle

Integrating both sides of this equation over the rectangle Si

and using the fact that the integral of any odd function over a
symmetric interval is zero, we obtain:

∣∣∣∣ ∫∫
Si
f (x , y) dS − f (xi , yj)∆S

∣∣∣∣ ≤∣∣∣∣12
(
∂2f

∂x2
(xi , yj)

2

3

(
∆x

2

)3

+
∂2f

∂y 2
(xi , yj)

2

3

(
∆y

2

)3)
+

O((∆x)4, (∆y)4)

)∣∣∣∣.
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The error estimation

∣∣∣∣ ∫∫
Si
f (x , y) dS −

N∑
k=1

fk∆S − 1

2

n∑
l=1

fl∆S

∣∣∣∣ ≤ O(MS

N2

)
.

Here M is maximal absolute value of second derivatives of
f (x , y) on the domain D. S is the area of D. N – number of
the mesh rectangles in D.
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The error estimation. An example.

F =

∫ π/2

0

∫ 1

0

(1− r 2)r dr dφ ∼ 0.392699

N = 10, S ∼ 0.3687, (F − S)N2 = 2.4;

N = 20, S ∼ 0.3863, (F − S)N2 = 2.56;

N = 50, S ∼ 0.39169, (F − S)N2 = 2.51;

N = 100, S ∼ 0.3924, (F − S)N2 = 2.74;

N = 200, S ∼ 0.3926, (F − S)N2 = 2.68.
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Discrete Fourier transform

Consider vector fn of values of the function f (x) in the points
xn = x0 + k xN−x0

N
n, n ∈ {0,N − 1}

The discrete Fourier transform (DFT) of a sequence of length
N is defined as:

f̃k =
N−1∑
n=0

fne
−2πi nk

N

f̃k is the k th sample of the DFT output sequence, and i is the
imaginary unit.
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Inverse discrete Fourier transform

The inverse discrete Fourier transform (IDFT) is the
mathematical operation that takes a sequence of
equally-spaced samples of the discrete-time Fourier transform
(DTFT) and transforms it back into a sequence of samples of
a function.
The IDFT of a sequence of length N is defined as:

fn =
1

N

N−1∑
k=0

f̃ke
2πi nk

N

where f̃k is the kth sample of the input sequence in the
frequency domain, and fn is the nth sample of the output
sequence in the time domain.
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