Surface integrals and Ostrogradsky-Gauss theorem

Surface integrals and Ostrogradsky-Gauss
theorem

0O.M. Kiselev

o0.kiselev@innopolis.ru

Innopolis university

April 28, 2023



http://smartmechanica.ddns.net/OK
http://innopolis.university

Surface integrals and Ostrogradsky-Gauss theorem

Parametric representations of manifolds in 3D space

An area on a surface

Surface integrals

The Osrogradsky-Gauss theorem




Surface integrals and Ostrogradsky-Gauss theorem

Embedded 2D manifolds in 3-dimensional space

An embedded manifold is

a subset M of Euclidean space R3
that can be locally parameterized

by a smooth function x : U — R3,
where U is an open subset of R?.

In particular, for any point p € M,
there exists a neighborhood V

of p in R? and a smooth function
x: U — VN M such that x is

a homeomorphism between U and

2D manifolds in 3D space
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An example of embedded 2D manifold

The parametric equation
¢ g for a torus with major radius
zA R and minor radius r is given by:

x = (R+ rcos®)cos¢
y = (R+ rcosf)sin¢

I z=rsin6

where 0 < 0 <2mand 0 < ¢ <27
are the polar and azimuthal angles, respectively.

2D manifolds in 3D space
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Orientable manifolds

An orientable

manifold is a regular manifold

M that admits a consistent choice

of orientation. More precisely, M is
i orientable if and only if there exists

a continuous non-vanishing vector

field v on M such that for any

two points p, q € M, the parallel
transport of v(p) along any smooth path connecting p and q
is equal to v(q).
As a typical example one can image a sphere.

2D manifolds in 3D space
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Non-orientable manifolds

A non-orientable manifold

is a regular manifold M that

does not admit a consistent choice
of orientation. More precisely, M
is non-orientable if and only if there
exists a continuous non-vanishing
vector field v on M such that

for any two points p, g € M, the
parallel transport of v(p) along any
closed loop on M is equal to —v(p). A classic example of a
non-orientable manifold is the Mobius strip.

2D manifolds in 3D space




A parametric definition of the M" obius strip

The Mobius strip can be parametrized by the following

equations:
v o u
x(u,v) = ( 5 €05 ) cos u
y(u,v) = <1 + gcos ;) sinu
v . u
z(u,v) = 55 in 3

where 0 < u <27 and -1 <v <1.

In these equations, the parameter u controls the orientation of
the strip around its central axis, while the parameter v
controls the width of the strip. The strip has a half-twist in it,
which can be seen by observing that the z-coordinate changes
sign as u goes from 0 to 27.

2D manifolds in 3D space
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A definitions of a surface using a vector approach

A parametric surface

is a surface in three-dimensional
space that is defined using

a set of equations of the form:

AN Y A v) = x(u, v)ity(u, v)j+z(u, v)k

where u and v are parameters that vary over some domain,
and 7, _j and k are the standard basis vectors in
three-dimensional space.

An area on a surface
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A parametric definition of a surface using a
coordinate approach

Alternatively, a parametric

Ik surface can be defined using a

@ set of three equations of the form:

Ty

)(/ i x=x(u,v), y=y(uv), z=2z(u,v)
SFAA

A U where u and v vary over some

domain. These equations describe
how the x, y, and z coordinates of a point on the surface vary
as the parameters v and v vary.

An area on a surface
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A tangent plane for given surface
Let S be a surface in R® given by the equation z = f(x, y),

where f is a differentiable function.
The equation of the tangent plane is given by:

z="f(a,b)+ gi(a, b)(x — a) + g;(a, b)(y — b)

or, equivalently,

r(x}y) = <X,y, f(a, b)> +

OF (2 5), 20 (a.b),=1) - (x — a,y — b, F(x,y) — (2, b)) = 0

<§(a/ b) 87)/(

An area on a surface
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An area of surfaces

The area of a small piece of the surface can be approximated
using the formula for the area of a parallelogram:

dA = ||ry x £||dudv

where r; and r, are tangent vectors to the surface, and du and
dv are small increments in the u and v directions, respectively.
To get the total area of the surface, we integrate this formula
over the entire surface:

A= // ||Fy % ry||dudv
S

where S is the surface we're interested in and the double
integral is taken over a parametrization of the surface.

An area on a surface
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An integral over a surface

Integration on a surface is the process of calculating the
integral of a function f(x, y, z) over a two-dimensional surface
S in three-dimensional space. The surface S can be defined
using either a set of equations or a parametrization, and the
integral is typically computed using a double integral over a
parametrization of the surface:

/ /5 f(x.y.2)dS

where dS represents the area element on the surface S.
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An integral over a surface for a vector field

Let S be a smooth oriented surface
in R? with unit normal vector field A. Let

F(x,y,2) = (P(x,y,2), Q(x,y,2), R(x,y,2))

be a continuous vector
X ) field defined on a region containing S.
Then the flux of F across S is given by:

J[[F s
s

where 1’ is the unit normal vector to S, and dS is the
differential surface area element on S.
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A geometric interpretation of surface integral

Let f(r) be a scalar field and

> F(r) be a vector field defined in the
ﬁ region of 3D space containing the
% surface S. Let Sp be a collection
X ¥ of small patches or elements of the
surface S, such that the union of
all the patches covers the entire surface. Each patch S; has an
area AS;, and is centered at a point r; on the surface.
The surface integral of f over S can be approximated by a

sum of integrals over each small patch, weighted by the area
of the patch:

//S f(r) dS = AlSI,-riO . f(r,-)AS,-

Surface integrals




A geometric interpretation of surface integral

Similarly, the surface integral of the vector field F over S can
be approximated by a sum of integrals over each small patch,
weighted by the normal vector to the patch:

//s F(r)-dS ~ Z F(r;) - n;AS;

where n; is the outward-pointing normal vector to the patch §;.

//5 F(r)-dS = lim F(r;) - n;AS;

AS;—0 .
1

Surface integrals




A surface integral as an integral over projections

//F ndS = //Fle, z)m +

Fa(x,y,z)n, + F3(x,y,z)ns) dS.

The projection of the

infinitesimal area dS on coordinate
planes can be represented

as follows: n;dS = dy dz,

npdS = dz dx, n3dS = dx dy.

As a result one obtains:

//F ndS = //ley, )dy dz +

Fa(x,y,z)dz dx + F3(x,y, z)dx dy.

Surface integrals
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The formula written in the terms of the cross
product

/LF.dS _ //D(F(f(u, V) (22( ) X V)) o

In this formula, F is the vector field, r(u, v) is the
parameterization of the surface S, and D is the domain in the
(u, v)-plane over which the surface is parameterized.

or  Or
ds—%XadUdV

Surface integrals




An example of the surface integral

Compute the surface integral of the vector field

F(x,y,z) = x?i + y?j + z%k over the part of the surface of the
sphere x? + y? + z? = 4 that lies in the first octant.

One possible parameterization of the surface of the sphere is
given by:

r(0, ) = (2sinf cos ¢)i + (2sin O sin ¢)j + (2 cos O)k
where 0 < 6 < 3 and 0 < ¢ < 5 are the polar and azimuthal

angles, respectively, that specify the location of each point on
the surface in the first octant.

Surface integrals
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An example of the surface integral

To evaluate the surface integral, we need to compute the dot
product of the vector field F with the area element dS at each
point on the surface, and then integrate over the surface using
the appropriate area element:

/Lp.ds—/f/flr(r(e,c/)))-(g; a0 do

where gg and 5 are the partial derivatives of r(6, ¢) with

respect to ¢ and ¢, respectively, and x denotes the cross
product.

Surface integrals
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An example of the surface integral

Using the parameterization r(¢, ¢) and the definition of the
vector field F, we can compute:

g; = 2cos(f) cos(¢)i + 2 cos(#) sin(¢p)j — 2sin(0)k,
g{; = —2sin(6) sin(¢)i + 2sin(#) cos(¢)j + Ok,
or Or ! i «

— X — = | 2cos(f) cos(¢) 2cos(f)sin(¢p) —2sin(d)k| =
9006 | ssin()sin(¢) 2sin(f)cos(¢) O

4sin? 0 cos ¢i + 4sin® fsin ¢j + 2sin(20)k,

F(r(0, ¢)) = 4sin® 0 cos? pi + 4sin? O sin? ¢j + 4 cos? Ok.

Surface integrals
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An example of the surface integral

Substituting these expressions into the surface integral, we get:

//5 F.-dS = /Og /0727(16sin (9)4sin (¢)3 N
dcos (0) (4 cos (6) sin (8)sin (¢)* + 4 cos (8) sin (#)cos (¢)2) +

16sin (0)*cos (¢)%) df dp =
/2
/ (37sin (¢)* + 4sin (¢)° + 3mcos (¢)° + 4cos (¢)°)dp = 67
0

Surface integrals




The Ostrogradsky-Gauss therem

For a smooth vector field F(r) defined in a region of 3D space
containing a closed surface S that encloses a volume V/, we

have:
JJ[w-rrav=[[F-as

In this formula, V is a closed volume, with boundary surface
S, and F is a vector field.

///v F)dV = ///8F1 F2 aaF3dxdydz

The Osrogradsky-Gauss theorem




A proof of the Ostrogradsky-Gauss theorem

Figure: The integration over alone x_(y, z) < x < x;(y, z) looks like
changing the body onto a bunch of spaghetti. Here the bunch of
spaghetti are noted as a set of green intervals.

Let’s consider the first term:

. F x4 (y,z) F
/// bdxdde:// / bdxdde:
v Ox AV JIx_(y,z) Ox
I Atcyadyd- [[ Recyaddz= [[ Rz
v+ Jov- v

y-Gauss theorem
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A proof of the Ostrogradsky-Gauss theorem

Similar calculations for the rest parts of the integral give a

result:
i
— //dv Fi(x,y,z)dy dz +

Fa(x,y,z)dz dx +

Fi(x,y,z)dxdy = // - dS.

Gauss theorem




Ostrogradsky-Gauss theorem. An example

Compute integral [, - x 2dy dz + y2dz dx + z%dy dx, where

22

0C is a surface of cone % + v = mas0<z<b
Let's change the varlables X = Brcos(a),y = 2rsin(a),z = z.
Then one gets:

// x?dy dz + y?dz dx + z%dy dx =
aC

///(2x—|—2y+22)dxdydz:

27
/ / / (2r cos(¢) + 2rsin(¢) + 2z) b2rdr do dz =

47ra/ rzdr dz = gazbz.

Gauss theorem




A physical interpretation of the
Ostrogradsky-Gauss theorem

Consider a fluid flowing through a closed surface S in
three-dimensional space. The velocity of the fluid at a point
(x,y, z) is given by the vector field

v(x,y,z) = w(x,y, 2)i+ v (x,y, 2)j + vo(x, vy, 2)k.

The divergence of this vector field represents the rate at which
fluid is flowing out of a given volume:

V-v:%vLavy—Favz

Gauss theorem




A physical interpretation of the
Ostrogradsky-Gauss theorem

The divergence theorem states that the total amount of fluid
flowing out of the closed surface S is equal to the integral of
the divergence of the velocity field over the volume enclosed
by the surface:

//Sv-dS:///V(V-v)dV

where dS is the outward-pointing differential surface element
on S and dV is the differential volume element inside the
surface.

Gauss theorem




Surface integrals and Ostrogradsky-Gauss theorem

rot of a vector field as a limit of circulation

The rotor (also known as the curl) of a vector field F at a
point is a measure of how much the vector field " curls” or
rotates around that point. One way to express the rotor using
the Green's formula is as follows:

rot(F)(r) = lim ;%CF(r’) -dr’

where r is the point of interest, C is a small closed curve
centered at r, and A is the area enclosed by C.




rot of a vector field as a limit of circulation

This formula tells us that the rotor of F at a point r is equal
to the limit of the circulation of F around a small closed curve
C centered at r, as the area enclosed by C shrinks to zero.

To see why this formula is true, we can use the Green's
formula, which relates the circulation of a vector field around a
closed curve to the integral of the rotor of the vector field over
the area enclosed by the curve:

%CF-dr—//Arot(F)-dS

where A is the area enclosed by the closed curve C, and dS is
the outward-pointing differential surface element on A.




rot of a vector field as a limit of circulation

If we divide both sides of this equation by the area A and take
the limit as A — 0, we obtain:

1
Iimj{F dr—hm//rot
A=0 A [

The left-hand side of this equation is the circulation of F
around a small closed curve C centered at r, and the
right-hand side is the average value of the rotor of F over the
area enclosed by C.

The Osrogradsky-Gauss theorem




rot of a vector field as a limit of circulation

Therefore, as A shrinks to zero, the right-hand side approaches
the value of the rotor of F at r, and we obtain the formula:

This formula tells us that the rotor of F at a point r is equal
to the limit of the circulation of F around a small closed curve
C centered at r, as the area enclosed by C shrinks to zero.

The Osrogradsky-Gauss theorem




A divergence as a limit of a flow through an
envelope

Let's consider a three-dimensional vector field

F(r) = F.(r)i+ F,(r)j + F.(r)k and a small closed envelope £
centered at a point ry in space.

We can think of the envelope £ as a small smooth surface
enveloping a volume e.

The net flow rate of F through the closed envelope £ is given

by the flux integral:
Flow = // F-dS
o€

where O& is the boundary surface of the envelope £ and dS is
the outward-pointing differential surface element on O€.

The Osrogradsky-Gauss theorem




A divergence as a limit of a flow through an
envelope

By the divergence theorem, the net flow rate of F through the
closed envelope £ is equal to the integral of the divergence of
F over the volume enclosed by the envelope:

Jfr o fff v

where dV is the differential volume element inside the
envelope £.

The Osrogradsky-Gauss theorem




A divergence as a limit of a flow through an
envelope

As the size of the envelope £ shrinks to zero, we can define
the divergence of F at rq as the limit of the net flow rate
through small closed envelopes centered at rg, as the size of
the envelopes shrinks to zero:

div(F)(rp) = lim — ///V FdV = lim - // F-dS
e—0 € e—0 € €

where &£ is a small closed envelope centered at rg and
enclosing a volume e.

The Osrogradsky-Gauss theorem
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