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Properties of curves in three dimensional space

2D mesh

Let f (x , y)
be a continuous function
defined on a domain D. The
border of the domain ∂D
is a piecewise smooth curve.
One
common method is to use
a rectangular grid with Nx

points in the x-direction and
Ny points in the y -direction.

Let’s define maxx∈D = b, minx∈D = a, maxy∈D =
β, miny∈D = α; ∆x = (b − a)/Nx , ∆y = (β − α)/Ny

Define the internal rectangles Sk and the rectangles
intersected the border of the domain as sk
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An approximation of 2D integral

Consider the approximation
of the integral by the sum:

∫∫
D
f (x , y) dS ≈

N∑
j=1

fk∆S +
1

2

n∑
l=1

fl∆S ,

where ∆S = ∆x∆y and fk = f (xi , yj). The point(xi , yj) is the
center of the rectangle Sk and fl = f (xi , yj), where (xi , yj) is
some point of sl .
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Error estimation

To estimate the error in the numerical approximation of the
integral using the rectangular grid method, we use Taylor’s
theorem to write the function f (x , y) as:

f (x , y) = f (xi , yj) +
∂f

∂x
(xi , yj)(x − xi) +

∂f

∂y
(xi , yj)(y − yj) +

1

2

∂2f

∂x2
(xi , yj)(x − xi)

2 +
1

2

∂2f

∂y 2
(xi , yj)(y − yj)

2 +

∂2f

∂x∂y
(xi , yj)(x − xi)(y − yj) + O(∆x3,∆y 3),

where xi and yj are the coordinates of the grid point (i , j), and
O(∆x3,∆y 3) denotes terms of order ∆x3 and ∆y 3 or higher.
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The error estimation in an elementary rectangle

Integrating both sides of this equation over the rectangle Si

and using the fact that the integral of any odd function over a
symmetric interval is zero, we obtain:

∣∣∣∣ ∫∫
Si
f (x , y) dS − f (xi , yj)∆S

∣∣∣∣ ≤∣∣∣∣12
(
∂2f

∂x2
(xi , yj)

2

3

(
∆x

2

)3

+
∂2f

∂y 2
(xi , yj)

2

3

(
∆y

2

)3)
+

O((∆x)4, (∆y)4)

)∣∣∣∣.
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The error estimation

∣∣∣∣ ∫∫
Si
f (x , y) dS −

N∑
k=1

fk∆S − 1

2

n∑
l=1

fl∆S

∣∣∣∣ ≤ O(MS

N2

)
.

Here M is maximal absolute value of second derivatives of
f (x , y) on the domain D. S is the area of D. N – number of
the mesh rectangles in D.
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The error estimation. An example.

F =

∫ π/2

0

∫ 1

0

(1− r 2)r dr dφ ∼ 0.392699

N = 10, S ∼ 0.3687, (F − S)N2 = 2.4;

N = 20, S ∼ 0.3863, (F − S)N2 = 2.56;

N = 50, S ∼ 0.39169, (F − S)N2 = 2.51;

N = 100, S ∼ 0.3924, (F − S)N2 = 2.74;

N = 200, S ∼ 0.3926, (F − S)N2 = 2.68.
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Discrete Fourier transform

Consider vector fn of values of the function f (x) in the points
xn = x0 + k xN−x0

N
n, n ∈ {0,N − 1}

The discrete Fourier transform (DFT) of a sequence of length
N is defined as:

f̃k =
N−1∑
n=0

fne
−2πi nk

N

f̃k is the k th sample of the DFT output sequence, and i is the
imaginary unit.
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Inverse discrete Fourier transform

The inverse discrete Fourier transform (IDFT) is the
mathematical operation that takes a sequence of
equally-spaced samples of the discrete-time Fourier transform
(DTFT) and transforms it back into a sequence of samples of
a function.
The IDFT of a sequence of length N is defined as:

fn =
1

N

N−1∑
k=0

f̃ke
2πi nk

N

where f̃k is the kth sample of the input sequence in the
frequency domain, and fn is the nth sample of the output
sequence in the time domain.
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DFT. Example. f (x) = sin(5x)
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DFT. Example. f (x) = sin(5x) + 0.5 · rand
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DFT. Example. f (x) = sin(5x) + 2 · rand
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A parametric form of a curve

Let us consider a curve on a plane. Assume that in the
Cartesian coordinates can be written as x = x(t) and
y = y(t).

~v = (vx , vy )

A(x(t0), y(t0))

B(x(t1), y(t1))
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A length of a curve

The components of tangent vector at given point can be
defined as the derivatives with respect to t vx = ẋ , vy = ẏ .
The length of the tangent vector:

V =
√
v 2
x + v 2

y .

The length of the path for the curve of the point over the
interval of the parameter t ∈ [t0, t1]:

S =

∫ t1

t0

√
ẋ2 + ẏ 2dt.
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Examples

A(x(t0), y(t0))
B(x(t1), y(t1))

Consider the plane curve:

x(t) = v1t, y(t) = at2.

The instant tangent vector at t is:

vx = v1, vy = 2at.

Numerical integration Discrete Fourier transform Plane curves Three dimensional curves Summary



Properties of curves in three dimensional space

Examples

We can thought that the x(t) and y(t) is the parametric form
for the curve of the point. In that way we obtain, that the
vector of instant tangent vector at t. The instant tangent
vector:

V (t) =
√

v 2
1 + 4a2t2.

The length of the length of the curve at t1 is:

S(t1) =
∫ t1
0

√
v 2
1 + 4a2t2dt = t

2

√
v 2
1 − 4a2t2 +

v2
1

4a
asinh

(
2at1
v1

)
.

Numerical integration Discrete Fourier transform Plane curves Three dimensional curves Summary



Properties of curves in three dimensional space

Integrating

S(t1) =

∫ t1

0

√
v 2
1 + 4a2t2dt = v1

∫ t1

0

√
1 +

4a2

v 2
1

t2dt =

∣∣∣∣2av1 t = sinh(τ), τ1 = asinh(2at1/v1), dt =
v1
2a

cosh(τ)dτ

∣∣∣∣ =

v 2
1

2a

∫ τ1

0

√
1 + sinh2(τ) cosh(τ)dτ =

v 2
1

2a

∫ τ1

0

cosh2(τ)dτ =
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Integrating

v 2
1

8a

∫ τ1

0

(e2τ + 2 + e−2τ )dτ =
v 2
1

4a
τ1 +

v 2
1

8a
sinh(2τ1)

v 2
1

4a
τ1 +

v 2
1

8a
2

√
1− sinh2(τ1) sinh(τ1) =

v 2
1

4a
asinh

(
2at1
v1

)
+

v 2
1

4a

√
1− 4a2

v 2
1

t2
2a

v1
t
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A curvature

The second derivative at the point:

ax = v̇x = ẍ , ay = v̇y = ÿ .

Theorem
If
√
v 2
x + v 2

y = const, then the vector of the second derivative
always is orthogonal to the tangent vector.
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A curvature

Proof. Let us differentiate the scalar product:

~an
~v

~v
~an

~v

d
dt

(~v , ~v) = 0,(
d
dt
~v , ~v
)

+
(
~v , d

dt
~v
)

= 0

2
(

d
dt
~v , ~v
)

= 0

(~a, ~v) = 0.
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A first derivative and tangent vector for the circle

Let us consider the circle:

x = R cos(ωt), y = R sin(ωt).

The tangent vector is:

vx = −Rω sin(ωt), vy = Rω cos(ωt).

The formula for the length of the tangent line looks like:

V =
√
R2ω2 sin2(ωt) + R2ω2 cos2(ωt) = Rω.
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Second derivative for the circle

The second derivative is defined the following formulas:

ax = −Rω2 cos(ωt), ay = −Rω2 sin(ωt).

and

|an| =
√

a2x + a2y = Rω2 =
V 2

R
.

This vector is orthogonal with respect to the tangent one.
Therefore one obtains a normal vector.

1

R
=
|an|
V 2

.

The quantity ρ = 1/R is called a curvature.
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Second derivative in general case

~aT

~a
~an

The second derivative
might be represented as
a sum two orthogonal vectors
as the tangent direction
and the normal one.
The value of the tangent

content of the second derivative can be obtained as follows:

|aT | =
(~a, ~v)√

(~v , ~v)
.

The projection of the second vector of the tangent line can be
represented as follows:

~aT =
(~a, ~v)

(~v , ~v)
~v =

axvx + ayvy
v 2
x + v 2

y

(vx~i + vy~j).
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Normal vector
The normal vector can be represented as:

~an = ~a − ~aT .

The same formula in the coordinate form is follows:

~an =
1

v 2
x + v 2

y

(ax(v 2
x + v 2

y )~i + ay (v 2
x + v 2

y )~j −

(axvx + ayvy )vx~i − (axvx + ayvy )vy~j) =

(axvy − ayvx)

v 2
x + v 2

y

(vy~i − vx~j)

The length of the normal vector:

|an| =
√

(a, a)− (aT , aT ) =
|axvy − ayvx |

|~v |
.
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The curvature in a general case

The formula for curvature of the curve:

ρ =
|an|

(~v , ~v)
=

√
(a, a)− (aT , aT )

(~v , ~v)
=
|axvy − ayvx |

(~v , ~v)3/2
=
|~a × ~v |

(~v , ~v)3/2
.
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The curvature. An example
Consider the flat motion with constant second derivative:

x(t) = v1t, y(t) = at2.

The tangent vector at t: vx = v1, vy = 2at. The instant
second derivative: ax = 0, ay = 2a. The value of projection on
the tangent direction is

|aT | =
(~a, ~v)√

(~v , ~v)
=

4a2t√
v12 + 4a2t2

.

The normal part of the second derivative:

|an| =

√
4a2 − 16a4t2

v12 + 4a2t2
=

2av1√
v12 + 4a2t2

.
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The curvature. An example

The curvature of the trajectory:

ρ =
2av1

(v 2
1 + 4a2t2)3/2

.

Therefore the maximum of the curvature is:

ρmax =
2a

v 2
1

,

and the curvature tends to zero as t →∞. The tangent
projection is |aT | = 4a2t√

v12+4a2t2
→ 2a as t →∞. The normal

vector 2av1√
v12+4a2t2

→ 0 as t →∞.
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General formulas

The radius-vector for the trajectory is

~r = (x(t), y(t), z(t)).

The tangent vector to the curve is following:

~v =
d

dt
~r = (ẋ , ẏ , ż).

The second derivative is:

~a =
d2

dt2
~r = (ẍ , ÿ , z̈).
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The vector of the second derivatives in 3D

The tangent projection of the vector of a second derivative:

~aT =
(~a, ~v)

(~v , ~v)
~v =

axvx + ayvy + azvz
v 2
x + v 2

y + v 2
z

(vx~i + vy~j + vz~k).

The normal component of the second derivative vector:

~an = ~a − ~aT .

The normal and tangent vectors define the osculating plane.
Define a unit vectors ~u = ~v√

(~v ,~v)
and ~n = ~an√

(~an,~an)
. The vector

~b = ~u × ~n is called binormal. The vectors ~u, ~n, ~b define the
orthogonal system of the vectors connected with the curve.
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A torsion of the curve
Torsion is a derivative of the angle of rotation of osculating
plane with respect to changing the length of the curve.

~v

~an
~b

~v

~an~b

The normal vector to the osculation plane:

~b = ~v × ~a.

The formula for the torsion has the form:

τ = |~̇b|dt
dl
.
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An example helix.

Helix:

~r = (cos(t), sin(t), t), ~v = (− sin(t), cos(t), 1)

~a = (− cos(t),− sin(t), 0); ~b = ~v×~a = (− sin(t),− cos(t), 0).

~̇b = (− cos(t), sin(t), 0), dl =
√

sin2(t) + cos2(t) + 1dt.

Torsion:

τ = |~̇b|dt
dl

=

√
cos2(t) + sin2(t)√

sin2(t) + cos2(t) + 1
=

1√
2
.
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Summary

I A length of a path is defined curvilinear integral of the
second kind.

I Value of normal acceleration and speed define the
curvature of a curve.

I Binormal vector define the osculating plane.
I Torsion define the change of the binormal vector along

the trajectory.
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