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Taylor’s formula

f (x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)2 +

f ′′′(x0)

3!
(x − x0)3 + · · ·+ f (n)(x0)

n!
(x − x0)n +

o((x − x0)n).
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Examples. sin(x)

sin′(x)|x=0 = cos(x)|x=0 = 1

cos′(x)|x=0 = − sin(x)|x=0 = 0,

sin(x) = sin(x)|x=0 + cos(x)|x=0x + (− sin(x)|x=0)
x2

2!
−

(− cos(x)|x=0)
x3

3!
+ (− sin(x)|x=0)

x4

4!
+ (cos(x)|x=0)

x5

5!
+ o(x5),

sin(x) = x − x3

3!
+

x5

5!
+ o(x5);
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Examples.log(1 + x)

log′(1 + x)|x=0 =
1

1 + x
|x=0 = 1,(

1

1 + x

)′

|x=0 =
−1

(1 + x)2
|x=0 = −1(

−1

(1 + x)2

)′

|x=0 =
2

(1 + x)3
|x=0 = 2,

log(1 + x) = x − x2

2
+

x3

3
+ o(x3).
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Examples.
√

1 + x

(√
1 + x

)′
|x=0 =

1

2
√

1 + x
|x=0 =

1

2
,(

1

2
√

1 + x

)′

|x=0 =
−1

4(1 + x)3/2
|x=0 =

−1

4
,(

−1

4(1 + x)3/2

)′

|x=0 =
3

8(1 + x)5/2
|x=0 =

3

8
,

√
1 + x = 1 +

x

2
− x2

8
+

x3

16
+ o(x3).
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Monotonous function
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Theorem.
Let function f (x)
be defined and differential
on (a, b). If f ′(x) > 0
on (a, b) then the function
increases on the interval, and
if f ′(x) < 0 on (a, b) then
f (x) decreases on (a, b).
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A proof of the theorem
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Proof.
Let a < x1 < x2 < b then
the Lagrange theorem climes
f (x2)− f (x1) = f ′(ξ)(x2−x1)
and f ′(ξ) > 0. The opposite
case can be considered
by the same manner.
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An extremum of a function
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Let f (x) be
defined in a neighborhood of x0.
The x0 is called a maximum (or
minimum) of f (x) if ∃ δ > 0 :
f (x0 + ∆) ≤ f (x0), |∆| < δ

(or f (x0 + ∆) ≥ f (x0)).
If the sign ≤ can be changed
on f (x) < f (x0) then we
will say a strong maximum and
correspondingly strong minimum
for the sign f (x) > f (x0)
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An extremum of a function
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An extremum of a function

The point of maximum and minimum are called points of
extremum.
The points of strong maximum and strong minimum are called
strong extremum
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Necessary conditions for the extremum
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Theorem Let the point x0 be an extremum point of f (x),
then the f ′(x0) = 0 or the derivative does not exits.
This theorem is a collocation of the Fermat’s lemma.
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Sufficient conditions for the strong extremum
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Let f (x) be continuous as x ∈ (a, b) and differential in
(a, x0) ∪ (x0, b). If ∃ε > 0,∀δ1, δ2, ε > δ1 > 0, ε > δ2 > 0 :
sign(f ′(x0 − δ1)) 6= sign(f ′(x0 + δ2)), then x0 is a point of the
strong extremum.
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A proof

Let’s consider f ′(x) > 0 as x ∈ (a, x0) and f ′(x) < 0 as
x ∈ (x0, b). The Lagrange’s theorem gives:

f (x)− f (x0) = f ′(ξ)(x − x0).

If x < x0, then f ′(ξ) > 0, x < ξ < x0, hence f (x)− f (x0) < 0.
If x > x0, then f ′(ξ) < 0, x0 < ξ < x , hence f (x)− f (x0) < 0.
Therefore x0 is a strong maximum.
The case of minimum can be considered by the same way.
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The points of increasing and decreasing
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Definition

A point x0 is called the point of increasing (or decreasing) of
f (x) if ∃δ > 0 f (x)− f (x0) < 0, x0 − δ < x < x0 (or
f (x)− f (x0) < 0) and f (x)− f (x0) < 0, x0 < x < x0 + δ (or
f (x)− f (x0) > 0).
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The counterexample
sin

(1
/x
)*
x^

2

x
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Let’s consider a function:

y(x) =

{
x2 sin

(
1
x

)
, x 6= 0;

0, x = 0.

The point x = 0 is equal neither the point of increasing nor
the point of decreasing.
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The extremum points and high-order derivatives

Theorem

Let f (x) be defined on neighborhood of x0 and

f (k)(x0) = 0, 0 < k < n − 1, f (n)(x0) 6= 0.

Then , if n is even, then x0 is a strong maximum for
f (n)(x0) < 0 and strong minimum for f (n)(x0) > 0. If n is odd
then x0 is a point of increasing if f (n)(x0) > 0 and a point of
decreasing otherwise.
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Proof of the theorem about extremum and

high-order derivatives
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∆f = f (x0 + ∆)− f (x0) = f (n)(x0)
∆n

n!

For even values of n the sign of the difference ∆f is the same
as the sign of the derivative. Hence x0 maximum for negative
f (n)(x0) and minimum for positive one.
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Proof of the theorem about extremum and

high-order derivatives
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For odd values of n the signum of the ∆f changes and
therefore x0 is an increasing point for positive f (n)(x0) and a
decresing point for negative one.

On previous lecture Monotonous functions Extremum points Geometric properties



Graphing

Corollaries

If f ′(x0) > 0 then x0 is point of increasing.
If f ′(x0) < 0 then x0 is point of decreasing.
If f ′(x0) = 0 and f ′′(x0) > 0, then x0 is point of minimum.
If f ′(x0) = 0 and f ′′(x0) < 0, then x0 is point of maximum.
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A convexity and a concavity
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Let’s consider a secant line for a curve.

Proposition

If the segment of the curve lies under the secant line then a
second derivative of the curve is positive.
If the segment of the curve lies upper than the secant line then
a second derivative of the curve is negative.
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A convexity and a concavity

The second derivative of the tangent line is equal to zero.
Then the function with positive second derivative grows faster
with respect to the tangent line. Then the tangent line lower
than the curve at right side of the touch point and vice wise
the negative second derivative means the function grows
slowly with respect to tangent line and curve lower that the
tangent line in the right side with respect to the touch point.
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A convex curve
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Let’s consider a curve f (x) on a segment x ∈ [a, b].

Theorem about a convex curve

If the segment of the curve lies atop than any secant line then
the curve is convex on this interval. If this curve has a second
derivative, then the second derivative is negative.
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A proof of the theorem about a convex curve

The equation for the secant line is follows:

y(x) =
f (x2)(x − x1) + f (x1)(x2 − x)

x2 − x1

Consider a difference:

y(x)− f (x) =
f (x2)(x − x1) + f (x1)(x2 − x)− f (x)(x2 − x1)

x2 − x1
=

(f (x2)− f (x))(x − x1)− (f (x)− f (x1))(x2 − x)

x2 − x1
=

f (ξ2)(x2 − x))(x − x1)− f (ξ1)(x − x1)(x2 − x)

x2 − x1
x1 < ξ1 < x < ξ2 < x2.
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A proof of the theorem about a convex curve
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Summary
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Geometric properties and derivatives of second-order

We postpone the finish of the proof of the theorem about a
convex curve up to the next lecture.
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