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Fundamental theorem of calculus

Definition of an indefinite integral

∫
f (x)dx ≡ F (x) + C , ∀C ∈ R

I
∫

is an integral sign.

I f (x) is called an integrand.

I dx is a differential of the variable of integration.

I F (x) is an antiderivative of the integrand.

I C is an arbitrary constant.
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Fundamental theorem of calculus

Theorem about integration by substitution

Theorem

Let F (x) and G (x) are differentiable functions and range of
G (x) in domain of the F (x). Then∫

F ′(G (x))G ′(x)dx = F (G (x)) + C .

Proof. Differentiate this formula straightforward!
The same formula:∫

F ′(G (x)) dG (x) = F (G (x)) + C .
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Fundamental theorem of calculus

An example

∫
sin(cos(x)) sin(x)dx = −

∫
sin(cos(x))d(cos(x) =

|t = cos(x)| =

−
∫

sin(t) dt = cos(t) + C = cos(cos(x)) + C .
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Fundamental theorem of calculus

An integration by parts

Theorem about integration by parts

If the function u(x) and v(x) are differentiable on some
interval E , then on the interval the following formula is valid:∫

u(x)v ′(x)dx = u(x)v(x)−
∫

v(x)u′(x)dx .

Proof. Differentiate the formula! The same formula:∫
u(x) dv(x) = u(x)v(x)−

∫
v(x) du(x).
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Fundamental theorem of calculus

An example

∫
xeλxdx =

∫
xd

(
eλx

λ

)
=

x
eλx

λ
− 1

λ

∫
eλx dx =

x
eλx

λ
− eλx

λ2
+ C .
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Fundamental theorem of calculus

Geometry of the antiderivative

Let F (x) is an the antiderivative of f (x):

f (x) =
F (x + ∆x)− F (x))

∆x
, ∆x → 0.

Then:

F (x + ∆x)− F (x) = f (x)∆x , ∆x → 0.

Let’s use the Lagrange theorem on the interval [x , x + ∆x ]:

F (x + ∆x)− F (x) = f (ξ)∆x .
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Fundamental theorem of calculus

The elementary area under the curve

Consider
an interval [a, b] and
suppose f (x) is continuous
function on this interval.
Let ∆k > 0 is a k-th step
for partition of the interval:

x0 = a, x1 = x0 + ∆1, . . . , xk+1 = xk + ∆k , . . . , xn = b.

In the simplest case the all might be the same ∆k = ∆.
Then

sk = f (ξk)∆k = F (xk−1)− F (xk)
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Fundamental theorem of calculus

The sum as a difference of antiderivatives

Let’s consider a sum:

n∑
k=1

f (ξk)∆k =
n∑

k=1

(F (xk)− F (xk−1))

= F (xn)− F (x0),

or

n∑
k=1

f (ξk)∆k = F (b)− F (a).

lim
max ∆k→0

n∑
k=1

f (ξk)∆k = F (b)− F (a).
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Fundamental theorem of calculus

A definite integral

lim
maxk ∆k→0

n∑
k=1

f (ξk)∆k =

∫ b

a

f (x)dx .

Fundamental theorem of calculus

If the function f(x) has an antiderivative F (x) on the interval
[a, b], then ∫ b

a

f (x)dx = F (b)− F (a).

The formula is called as Newton-Leibniz formula.
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Fundamental theorem of calculus

A usage of the Newton-Leibniz formula

∫ 1

0

xdx =
x2

2

∣∣x=1
x=0 =

1

2
.∫ π/2

−π/2

sin(x)dx = − cos(x)|x=π/2
x=−π/1

= − cos(π/2) + cos(−π/2) = 0.∫ e5

1

dx

x
= log(x)|x=e5

x=1 = 5.
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Fundamental theorem of calculus

Integration by substitution

Let F (x) be an anitderivative of f (x), then a general rule for
integration:∫ b

a

f (G (x))G ′(x)dx =

∫ G(b)

G(a)

f (G (x))dG (x)

= F (G (b))− F (G (a)).

On the previous lecture Geometrical sense Fundamental theorem of calculus Definite integral



Fundamental theorem of calculus

Integration by substitution

A general rule:∫ b

a

f (x)dx =

∣∣∣∣ x = g(t),
dx = g ′(t)dt

∣∣∣∣ =

∫ β

α

f (g(t))g ′(t)dt.

Here limits of integration α and β are such that
g(α) = a, g(β) = b.
As a result one gets:∫ b

a

f (x)dx =

∫ β

α

h(t)dt, h(t) = f (g(t))g ′(t).
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Fundamental theorem of calculus

Integration by substitution. An example

∫ 1

0

√
1− x2dx =

∣∣∣∣ x = sin(t), dx = cos(t)dt
α = arcsin(0) = 0, β = arcsin(1) = π/2

∣∣∣∣ =∫ π/2

0

√
1− sin2(t) cos(t)dt =

∫ π/2

0

cos2(t)dt

=

∫ π/2

0

1 + cos(2t)

2
dt =∫ π/2

0

dt

2
+

∫ π/2

0

cos(2t)

2

d(2t)

2
=

π

4
+

1

4
(sin(π)− sin(0)) =

π

4
.
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Fundamental theorem of calculus

Integration by parts

A general rule:∫ b

a

u(x)v ′(x)dx =

∫ b

a

u(x)dv(x) =

u(b)v(b)− u(a)v(a)−
∫ b

a

v(x)u′(x)dx .

An example:∫ 2π

0

x sin(x)dx = −
∫ 2π

0

xd cos(x) =

−x cos(x)|x=2π
x=0 +

∫ 2π

0

cos(x)dx =

−2π cos(2π) + sin(x)|x=2π
x=0 = −2π.
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Fundamental theorem of calculus

Riemann sum

Consider a partition of the interval [a, b]:

a < x1 < x2 < · · · < xk < xk+1 < · · · < xn−1 < b, ∆xk = xk+1−x1.

The sum

Sn =
n∑

k=1

f (ξk)∆xk , ξk ∈ [xk , xk+1]

is called Riemann sum.
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Fundamental theorem of calculus

Definite integral as a limit of Riemann sum

Definition. The function f (x) is called integrable

on the interval [a, b] if there exists a limit of Remanian sum

A = lim
max ∆k→0

n∑
k=1

f (ξk)∆xk ,

∀{xk}nk=1 and ∀ξk ∈ [xk , xk+1]

By another words: there exists A such that for any ε > 0
exists δ > 0 such that

|A−
n∑

k=1

f (ξk)∆xk | < ε, max
k

∆k < δ,∀ξ ∈ [xk , xk+1].
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Fundamental theorem of calculus

Darboux sums

Let’s define
an upper Darboux sum:

Sn =
n∑

k=1

Mk∆k ,

Mk = max
x∈[xk ,xk+1

(f (x)),

and a lower Darboux sum:

sn =
n∑

k=1

mk∆k ,

mk = min
x∈[xk ,xk+1

(f (x)).
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Fundamental theorem of calculus

Properties of the Darboux sums

∀ partitions X = {xk}nk=1 and X ′ = {x ′k}n
′

k=1

sn < Sn′.

Proof. Let’s construct partition X̃ which contains both X and
X ′. For any intersected intervals of X and X ′: mk ≤ Mk ′ , then

sn =
∑
X̃

mk∆̃x̃k ≤
∑
X̃

Mk ′∆̃x̃k = Sn′ .
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Fundamental theorem of calculus

Darboux and Riemann sums

∀ partition X = {xk}nk=1:

sn =
n∑

k=1

mk∆k ≤
n∑

k=1

f (ξk)∆xk ≤
n∑

k=1

Mk∆k = Sn.

Proof. Let’s consider any terms of this sums for certain
interval:

mk∆xk ≤ f (ξk)∆xk ≤ Mk∆xk .

Then the same is true for the sums.
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Fundamental theorem of calculus

Continuity implies integrability on a finite interval

Theorem

Let f (x) be continuous on the interval x ∈ [a, b], then f (x) in
integrable on the interval.

Proof. The continuous function is bounded on the finite
interval therefore upper and lower Darboux sums are bounded.
Fined the difference on some partition:

Sn − sn =
n∑

k=1

(Mk −mk)∆xk ≤ max
k

(Mk −mk)(b − a)

Due to continuity of f (x) ∀ε > 0
∃δ : maxk(Mk −mk) < ε/(b − a) as maxk ∆k < δ.
Then

lim
maxk ∆xk→0

(Sn − sn) = 0.
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Fundamental theorem of calculus

Continuity implies integrability on a finite interval

Then

lim
maxk ∆xk→0

Sn = lim
maxk ∆xk→0

sn = I ,

due to the inequality:

sn ≤
n∑

k=1

f (ξk)∆xk ≤ Sn.

It yields:

I = lim
maxk ∆xk→0

n∑
k=1

f (ξk)∆xk ,

or ∫ b

a

f (x)dx = I .
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Fundamental theorem of calculus

Summary
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