Fundamental theorem of calculus

O.M. Kiselev o.kiselev@innopolis.ru

Innopolis university

November 11, 2022

On the previous lecture

Geometric sense of the antiderivative

Fundamental theorem of calculus

Definition of an indefinite integral

$$\int f(x)dx \equiv F(x) + C, \quad \forall C \in \mathbb{R}$$

- \int is an integral sign.
- f(x) is called an integrand.
- dx is a differential of the variable of integration.
- F(x) is an antiderivative of the integrand.
- C is an arbitrary constant.

Theorem about integration by substitution

Theorem

~

٠

Let F(x) and G(x) are differentiable functions and range of G(x) in domain of the F(x). Then

$$\int F'(G(x))G'(x)dx = F(G(x)) + C.$$

Proof. Differentiate this formula straightforward! The same formula:

$$\int F'(G(x)) \, dG(x) = F(G(x)) + C.$$

An example

$$\int \sin(\cos(x))\sin(x)dx = -\int \sin(\cos(x))d(\cos(x)) = |t = \cos(x)| = -\int \sin(t) dt = \cos(t) + C = \cos(\cos(x)) + C.$$

Geometrical sense

An integration by parts

Theorem about integration by parts

If the function u(x) and v(x) are differentiable on some interval E, then on the interval the following formula is valid:

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx.$$

Proof. Differentiate the formula! The same formula:

$$\int u(x) dv(x) = u(x)v(x) - \int v(x) du(x).$$

An example

$$\int xe^{\lambda x} dx = \int xd\left(\frac{e^{\lambda x}}{\lambda}\right) = x\frac{e^{\lambda x}}{\lambda} - \frac{1}{\lambda}\int e^{\lambda x} dx = x\frac{e^{\lambda x}}{\lambda} - \frac{e^{\lambda x}}{\lambda^2} + C.$$

On the previous lecture

Geometrical sense

Fundamental theorem of calculus

Geometry of the antiderivative

Let F(x) is an the antiderivative of f(x):

$$f(x) = \frac{F(x + \Delta x) - F(x))}{\Delta x}, \ \Delta x \to 0.$$

Then:

$$F(x + \Delta x) - F(x) = f(x)\Delta x, \ \Delta x \to 0.$$

Let's use the Lagrange theorem on the interval $[x, x + \Delta x]$:

$$F(x + \Delta x) - F(x) = f(\xi)\Delta x.$$

Fundamental theorem of calculus

The elementary area under the curve

Consider an interval [a, b] and suppose f(x) is continuous function on this interval. Let $\Delta_k > 0$ is a *k*-th step for partition of the interval:

$$x_0 = a, x_1 = x_0 + \Delta_1, \dots, x_{k+1} = x_k + \Delta_k, \dots, x_n = b.$$

In the simplest case the all might be the same $\Delta_k = \Delta$. Then

$$s_k = f(\xi_k)\Delta_k = F(x_{k-1}) - F(x_k)$$

The sum as a difference of antiderivatives

Let's consider a sum:

or

$$\lim_{\max\Delta_k\to 0}\sum_{k=1}^n f(\xi_k)\Delta_k = F(b) - F(a).$$

On the previous lecture

Fundamental theorem of calculus

A definite integral

$$\lim_{\max_k \Delta_k \to 0} \sum_{k=1}^n f(\xi_k) \Delta_k = \int_a^b f(x) dx.$$

Fundamental theorem of calculus

If the function f(x) has an antiderivative F(x) on the interval [a, b], then

$$\int_a^b f(x)dx = F(b) - F(a).$$

The formula is called as Newton-Leibniz formula.

On	the		
00000			

A usage of the Newton-Leibniz formula

$$\int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{x=0}^{x=1} = \frac{1}{2}.$$

$$\int_{-\pi/2}^{\pi/2} \sin(x) dx = -\cos(x) \Big|_{x=-\pi/1}^{x=\pi/2}$$

$$= -\cos(\pi/2) + \cos(-\pi/2) = 0.$$

$$\int_{1}^{e^{5}} \frac{dx}{x} = \log(x) \Big|_{x=1}^{x=e^{5}} = 5.$$

On the previous lecture

Geometrical sens

Fundamental theorem of calculus

Integration by substitution

Let F(x) be an anitderivative of f(x), then a general rule for integration:

$$\int_a^b f(G(x))G'(x)dx = \int_{G(a)}^{G(b)} f(G(x))dG(x)$$
$$= F(G(b)) - F(G(a)).$$

Integration by substitution

A general rule:

$$\int_a^b f(x)dx = \left| \begin{array}{c} x = g(t), \\ dx = g'(t)dt \end{array} \right| = \int_\alpha^\beta f(g(t))g'(t)dt.$$

Here limits of integration α and β are such that $g(\alpha) = a, g(\beta) = b$. As a result one gets:

$$\int_a^b f(x)dx = \int_\alpha^\beta h(t)dt, \ h(t) = f(g(t))g'(t).$$

On the previous lecture

Geometrical sens

Fundamental theorem of calculus

Integration by substitution. An example

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \begin{vmatrix} x = \sin(t), \ dx = \cos(t) dt \\ \alpha = \arcsin(0) = 0, \ \beta = \arcsin(1) = \pi/2 \end{vmatrix} = \\ \int_{0}^{\pi/2} \sqrt{1 - \sin^{2}(t)} \cos(t) dt = \int_{0}^{\pi/2} \cos^{2}(t) dt \\ = \int_{0}^{\pi/2} \frac{1 + \cos(2t)}{2} dt = \\ \int_{0}^{\pi/2} \frac{dt}{2} + \int_{0}^{\pi/2} \frac{\cos(2t)}{2} \frac{d(2t)}{2} = \\ \frac{\pi}{4} + \frac{1}{4} (\sin(\pi) - \sin(0)) = \frac{\pi}{4}. \end{vmatrix}$$

Integration by parts

A general rule:

$$\int_a^b u(x)v'(x)dx = \int_a^b u(x)dv(x) =$$
$$u(b)v(b) - u(a)v(a) - \int_a^b v(x)u'(x)dx.$$

An example:

$$\int_{0}^{2\pi} x \sin(x) dx = -\int_{0}^{2\pi} x d \cos(x) =$$
$$-x \cos(x)|_{x=0}^{x=2\pi} + \int_{0}^{2\pi} \cos(x) dx =$$
$$-2\pi \cos(2\pi) + \sin(x)|_{x=0}^{x=2\pi} = -2\pi.$$

Riemann sum

Consider a partition of the interval [a, b]:

$$a < x_1 < x_2 < \cdots < x_k < x_{k+1} < \cdots < x_{n-1} < b, \ \Delta x_k = x_{k+1} - x_1.$$

i ne sum

$$S_n = \sum_{k=1}^n f(\xi_k) \Delta x_k, \ \xi_k \in [x_k, x_{k+1}]$$

is called Riemann sum.

Definite integral as a limit of Riemann sum

Definition. The function f(x) is called integrable

on the interval [a, b] if there exists a limit of Remanian sum

$$A = \lim_{\max \Delta_k \to 0} \sum_{k=1}^n f(\xi_k) \Delta x_k,$$

$$orall \{x_k\}_{k=1}^n$$
 and $orall \xi_k \in [x_k, x_{k+1}]$

By another words: there exists A such that for any $\epsilon > 0$ exists $\delta > 0$ such that

$$|A-\sum_{k=1}^n f(\xi_k)\Delta x_k| < \epsilon, \max_k \Delta_k < \delta, \forall \xi \in [x_k, x_{k+1}].$$

Darboux sums

Let's define an upper Darboux sum:

$$S_n = \sum_{k=1}^n M_k \Delta_k,$$
$$M_k = \max_{x \in [x_k, x_{k+1}]} (f(x)),$$

and a lower Darboux sum:

$$s_n = \sum_{k=1}^n m_k \Delta_k,$$
$$m_k = \min_{x \in [x_k, x_{k+1}]} (f(x)).$$

Geometrical sens

Fundamental theorem of calculus

Properties of the Darboux sums

$$\forall$$
 partitions $X = \{x_k\}_{k=1}^n$ and $X' = \{x'_k\}_{k=1}^{n'}$
 $s_n < S_{n'}$.

Proof. Let's construct partition \tilde{X} which contains both X and X'. For any intersected intervals of X and X': $m_k \leq M_{k'}$, then

$$s_n = \sum_{\tilde{X}} m_k \tilde{\Delta} \tilde{x}_k \leq \sum_{\tilde{X}} M_{k'} \tilde{\Delta} \tilde{x}_k = S_{n'}.$$

On the previous lecture

Geometrical sense

Fundamental theorem of calculus

Darboux and Riemann sums

 \forall partition $X = \{x_k\}_{k=1}^n$:

$$s_n = \sum_{k=1}^n m_k \Delta_k \leq \sum_{k=1}^n f(\xi_k) \Delta x_k \leq \sum_{k=1}^n M_k \Delta_k = S_n.$$

Proof. Let's consider any terms of this sums for certain interval:

$$m_k \Delta x_k \leq f(\xi_k) \Delta x_k \leq M_k \Delta x_k.$$

Then the same is true for the sums.

Continuity implies integrability on a finite interval

Theorem

Let f(x) be continuous on the interval $x \in [a, b]$, then f(x) in integrable on the interval.

Proof. The continuous function is bounded on the finite interval therefore upper and lower Darboux sums are bounded. Fined the difference on some partition:

$$S_n-s_n=\sum_{k=1}^n(M_k-m_k)\Delta x_k\leq \max_k(M_k-m_k)(b-a)$$

Due to continuity of $f(x) \ \forall \epsilon > 0$ $\exists \delta : \max_k (M_k - m_k) < \epsilon/(b - a) \text{ as } \max_k \Delta_k < \delta.$ Then

$$\lim_{\max_k \Delta x_k \to 0} (S_n - s_n) = 0.$$

Continuity implies integrability on a finite interval

Then

$$\lim_{\max_k \Delta x_k \to 0} S_n = \lim_{\max_k \Delta x_k \to 0} s_n = I,$$

due to the inequality:

It yields:

$$I = \lim_{\max_k \Delta x_k \to 0} \sum_{k=1}^n f(\xi_k) \Delta x_k,$$

or

$$\int_a^b f(x) dx = I.$$

٠

On the previous lecture

Geometric sense of the antiderivative

Fundamental theorem of calculus