
Antiderivatives

Antiderivatives

O.M. Kiselev
o.kiselev@innopolis.ru

Innopolis university

October 28, 2022

Previous lecture Asymptotes Antiderivatives Integration techniques

http://smartmechanica.com/OK
http://innopolis.university


Antiderivatives

Previous lecture

Asymptotes

Antiderivatives

Integration techniques

Previous lecture Asymptotes Antiderivatives Integration techniques



Antiderivatives

A convexity and a concavity

The second derivative of the tangent line is equal to zero.
Then the function with positive second derivative grows faster
with respect to the tangent line. Then the tangent line lower
than the curve at right side of the touch point and vice wise
the negative second derivative means the function grows
slowly with respect to tangent line and curve lower that the
tangent line in the right side with respect to the touch point.
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A convex curve
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Let’s consider a curve f (x) on a segment x ∈ [a, b].

Theorem about a convex curve

If the segment of the curve lies lower than any secant line then
the curve is convex on this interval. If this curve has a second
derivative, then the second derivative is positive.
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Prof of the theorem about a convex curve

y(x)− f (x) =
(f ′(ξ2)− f ′(ξ1))(x2 − x)(x − x1)

x2 − x1
=

f ′′(η)(ξ2 − ξ1)(x2 − x)(x − x1)

x2 − x1
,

x1 < ξ1 < x < ξ2 < x2, ξ1 < η < ξ2.

Then
y(x)− f (x) > 0⇒ f ′′(η) > 0.
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A concave function
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Theorem about a concave curve

If the segment of the curve lies upper than any secant line then
the curve is concave function on this interval. If this curve has
a second derivative, then the second derivative is negative.
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A concave function
Proof

is follows from the equality:

y(x)− f (x) =
f ′′(η)(ξ2 − ξ1)(x2 − x)(x − x1)

x2 − x1
,

x1 < ξ1 < x < ξ2 < x2, ξ1 < η < ξ2.

Then
y(x)− f (x) < 0⇒ f ′′(η) < 0.

Previous lecture Asymptotes Antiderivatives Integration techniques



Antiderivatives

A point of inflection
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If f ′′(x0) = 0 and f ′′(x1)f ′′(x2) < 0, in small neighborhood of
x0, x1 < x0 < x2 then x0 is an inflection point.

Theorem about the inflection point

If f ′′(x0) = 0 and f ′′′(x0) 6= 0 then x0 is an inflection point.

Proof
f ′′(x)− f ′′(x0) ∼ f ′′′(x0)(x − x0).
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Asymptotes
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Definition

Let f (x) be defined ∀x > a. If ∃k , l ∈ R:

f (x)− kx − l = o(1), x →∞,

then the straight line kx + l is called asymptote
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Construction of the asymptote
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If asymptote
exists then the parameters
of the asymptote are

k = lim
x→∞

f (x)

x
,

l = lim
x→∞

f (x)− kx .

If
lim
x→x0

f (x) =∞,

then the x = x0 is called a vertical asymptote.
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A table of derivatives of elementary functions

d

dx
xn = nxn−1

,

d

dx
ex = ex ,

d

dx
log(x) =

1

x
,

d

dx
sin(x) = cos(x),

d

dx
cos(x) = − sin(x),

d

dx
tan(x) =

1

cos2(x)
,

d

dx
arcsin(x) =

1√
1− x2

,

d

dx
arctan(x) =

1

1 + x2
.
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A definition of an antiderivative

Definition.

Let a function f (x) be defined at some interval E . The
function F (x) such that

d

dx
F (x) = f (x), ∀x ∈ E .

is called the antiderivative of the function f (x) on E .

If F (x) is antiderivative of f (x), then F (x) + C is
antiderivative of f (x) also. Proof.

d

dx
(F (x) + C ) = f (x).
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Applications in physics

Suppose we know the velocity of the straightforward
movement v(t). Define the instant value of a coordinate as
x(t).
Then

ẋ = v .

Hence the x(t) is an antiderivative of the velocity v(t). If we
know the acceleration a(t) then the velocity v(t) is an
antiderivative of a(t)
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An indefinite integral

Let’s rewrite the formula for an antiderivative in differentials:

dF (x) = f (x)dx .

Definition ∫
f (x)dx ≡ F (x) + C , ∀C ∈ R

the left-hand side of the formula is called indefinite integral.
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Definition of an indefinite integral

∫
f (x)dx ≡ F (x) + C , ∀C ∈ R

I
∫

is an integral sign.

I f (x) is called an integrand.

I dx is a differential of the variable of integration.

I F (x) is an antiderivative of the integrand.

I C is an arbitrary constant.
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Properties of the indefinite integrals

I Let F ′(x) = f (x) then∫
f (x)dx =

∫
dF (x) = F (x) + C , C ∈ R.

I d
(∫

f (x)dx
)

= F (x).

I If F ′(x) = f (x) and G ′(x) = g(x) on x ∈ E , then∫
(f (x)+g(x))dx =

∫
f (x)dx+

∫
g(x)dx = F (x)+G (x)+C .

I If F ′(x) = f (x) then∫
λf (x)dx = λ

∫
f (x)dx = λF (x) + C ,∀λ ∈ R.
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A table of antiderivatives for elementary functions

∫
xn−1dx =

xn

n
+ C ,∫

ex = ex + C ,∫
dx

x
= log(|x|) + C ,∫

cos(x)dx = sin(x) + C ,∫
sin(x)dx = − cos(x) + C ,∫

dx

cos2(x)
= tan(x) + C ,

∫
dx√
1− x2

= arcsin(x) + C ,

∫
dx

1 + x2
= arctan(x) + C .
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Applications in physics

Consider a free falling load with the vertical acceleration
a = −g = const then the velocity as the indefinite integral:

v(t) = −gt + C

If we know the initial velocity v(0) = v0, then

v(0) = C = v0,

v(t) = v0 − gt.
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Applications in physics

The instant coordinate can be considered as an indefinite
integral of the velocity:

x(t) = v0t − g
t2

2
+ C .

If we know the initial position x0, then

x(0) = C = x0.

Finally one gets the law for a free falling load:

x(t) = x0 + v0t − g
t2

2
.
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Substitutions

Let’s consider the chain rule for the derivative:

d

dx
F (G (x)) = F ′(G (x))G ′(x),

then in the differential form:

d(F (G (x))) = F ′(G (x))G ′(x)dx = F ′(G (x))d(G (x)).

Let’s define y = G (x), then:

F ′(G (x))d(G (x) = F ′(y)dy .

It yields:∫
F ′(G (x))G ′(x)dx =

∫
F ′(G (x))dG (x) =

∫
F ′(y)dy ,
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Substitutions

∫
F ′(G (x))G ′(x)dx =

∫
F ′(G (x))dG (x) =

∫
F ′(y)dy ,

then: ∫
dF (y) = F (y) + C = F (G (x)) + C .
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Examples

∫
eλxdx =

∫
eλx

d(λx)

λ
=

1

λ

∫
eydy =

1

λ
ey + C =

eλx

λ
+ C .

∫
cos(x2)xdx =

∫
cos(x2)

d(x2)

2
=

1

2

∫
cos(y)dy =

1

2
sin(y) + C =

1

2
sin(x2) + C .
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Theorem about integration by substitution

Theorem about integration by substitution

Let F (x) and G (x) are differentiable functions and range of
G (x) in domain of the F (x). Then∫

F ′(G (x))G ′(x)dx = F (G (x)) + C .

Proof. Differentiate this formula straightforward!
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Applications in population dynamics

Let’s assume that a population of fishes in a pond increases
proportional to the numbers of the fishes and initial quantity
of the fish was n0 This means:

d

dt
n = kn,

or in differential form:

dn = kndt.
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Applications in population dynamics

dn

n
= kdt.

Then the antiderivative for both parts give as the dependency

log |n| = kt + c , c ≡ log |C | ∈ R.

Then
n(t) = Cekt ,

and due to initial value of n0 ones gets:

n(t) = n0e
kt .

Previous lecture Asymptotes Antiderivatives Integration techniques



Antiderivatives

An integration by parts

Let’s consider:
d

dx
(u(x)v(x)) =

du(x)

dx
v(x) + u(x)

dv(x)

dx
.

These formula in the differential form can be represented as:

d(uv) = d(u(x))v(x) + u(x)d(v(x)),

or the same:

u(x)dv(x) = d(uv)− d(u(x))v(x).

This yields∫
u(x)v ′(x)dx =

∫
d(uv)−

∫
v(x)u′(x)dx ,

or ∫
u(x)v ′(x)dx = u(x)v(x)−

∫
v(x)u′(x)dx .
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An integration by parts

Theorem about integration by parts

If the function u(x) and v(x) are differentiable on some
interval E , then on the interval the following formula is valid:∫

u(x)v ′(x)dx = u(x)v(x)−
∫

v(x)u′(x)dx .

Proof. Differentiate the formula!
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Example

∫
x log(x)dx =

1

2

∫
log(x)d(x2) =

1

2
log(x)x2 − 1

2

∫
x2

dx

x
=

x2

2
log(x)− 1

2

∫
xdx =

x2

2
log(x)− 1

4
x2 + C .
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An example

∫
ex sin(x)dx = ex sin(x)−

∫
ex cos(x)dx =

ex sin(x)− ex cos(x)−
∫

ex sin(x)dx .

2

∫
ex sin(x)dx = ex sin(x)− ex cos(x) + C ,∫
ex sin(x)dx =

ex sin(x)− ex cos(x)

2
+ C .
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Summary
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